424
Views
27
CrossRef citations to date
0
Altmetric
Articles

Vibration and static buckling behavior of variable thickness flexoelectric nanoplates

, , , &
Pages 7102-7130 | Received 18 Apr 2022, Accepted 05 Jun 2022, Published online: 28 Jul 2022

References

  • Akhavan, H., S. H. Hashemi, H. R. D. Taher, A. Alibeigloo, and S. Vahabi. 2009. Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis. Computational Materials Science 44 (3):951–61. doi:10.1016/j.commatsci.2008.07.001.
  • Amir, S., H. BabaAkbar-Zarei, and M. Khorasani. 2020. Flexoelectric vibration analysis of nanocomposite sandwich plates. Mechanics Based Design of Structures and Machines 48 (2):146–63. doi:10.1080/15397734.2019.1624175.
  • Amir, S., M. Khorasani, and H. BabaAkbar-Zarei. 2020. Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory. Journal of Sandwich Structures & Materials 22 (7):2186–209. doi:10.1177/1099636218795385.
  • Ansari, R., and R. Gholami. 2016. Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. International Journal of Applied Mechanics 8 (4):1650053. doi:10.1142/S1758825116500538.
  • Baferani, A. H., A. R. Saidi, and H. Ehteshami. 2011. Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Composite Structures 93 (7):1842–53. doi:10.1016/j.compstruct.2011.01.020.
  • Bui, T. Q., T. V. Do, L. H. T. Ton, D. H. Doan, S. Tanaka, D. T. Pham, N. V. Thien-An, T. Yu, and S. Hirose. 2016. On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Composites Part B: Engineering 92:218–41. doi:10.1016/j.compositesb.2016.02.048.
  • Dang, H. M., B. V. Phuong, V. B. Phung, D. V. Thom, P. V. Minh, S. S. Gavriushin, and N. V. Duc. 2021. Development of a generalized mathematical model for slider-crank mechanism based on multiobjective concurrent engineering with application. Arabian Journal for Science and Engineering 46 (8):8037–53. doi:10.1007/s13369-021-05627-2.
  • Dat, P. T., D. V. Thom, and D. T. Luat. 2016. Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory. Vietnam Journal of Mechanics 38 (2):103–22. doi:10.15625/0866-7136/38/2/6730.
  • Doan, D. H., A. M. Zenkour, and D. Van Thom. 2022. Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects. The European Physical Journal Plus 137:447. doi:10.1140/epjp/s13360-022-02631-9.
  • Duc, D. H., D. V. Thom, N. X. Nguyen, P. V. Vinh, and N. T. Trung. 2021. Multi-phase-field modelling of the elastic and buckling behaviour of laminates with ply cracks. Applied Mathematical Modelling 94:68–86. doi:10.1016/j.apm.2020.12.038.
  • Dung, N. T., P. Van Minh, H. M. Hung, and D. M. Tien. 2021. The third-order shear deformation theory for modeling the static bending and dynamic responses of piezoelectric bidirectional functionally graded plates. Advances in Materials Science and Engineering. 2021:1–15. doi:10.1155/2021/5520240.
  • Ebrahimi, F., and M. Karimiasl. 2018. Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams. Mechanics of Advanced Materials and Structures 25 (11):943–52. doi:10.1080/15376494.2017.1329468.
  • Ghobadi, A., Y. T. Beni, and H. Golestanian. 2020. Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field. Archive of Applied Mechanics 90 (9):2025–70. doi:10.1007/s00419-020-01708-0.
  • Ghobadi, A., Y. Tadi Beni, and K. Kamil Żur. 2021. Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon. Composite Structures 259:113220. doi:10.1016/j.compstruct.2020.113220.
  • Ghorbanpour Arani, A., A. H. Soltan Arani, and E. Haghparast. 2021. Flexoelectric and surface effects on vibration frequencies of annular nanoplate. Indian Journal of Physics 95 (10):2063–83. doi:10.1007/s12648-020-01854-9.
  • Harik, I. E., X. Liu, and R. Ekambaram. 1991. Elastic stability of plates with varying rigidities. Computers and Structures 38 (2):161–9. doi:10.1016/0045-7949(91)90094-3.
  • Lam, K. Y., C. M. Wang, and X. Q. He. 2000. Canonical exact solutions for Levy-plates on two-parameter foundation using Green’s functions. Engineering Structures 22 (4):364–78. doi:10.1016/S0141-0296(98)00116-3.
  • Liang, X., W. Yang, S. Hu, and S. Shen. 2016. Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. Journal of Physics D: Applied Physics 49 (11):115307. doi:10.1088/0022-3727/49/11/115307.
  • Liu, Y., Z. Qin, and F. Chu. 2021. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. International Journal of Mechanical Sciences 201:106474. doi:10.1016/j.ijmecsci.2021.106474.
  • Liu, Y., Z. Qin, and F. Chu. 2022. Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells. Communications in Nonlinear Science and Numerical Simulation 107:106146. doi:10.1016/j.cnsns.2021.106146.
  • Luat, D. T., D. Van Thom, T. T. Thanh, P. Van Minh, T. Van Ke, and P. Van Vinh. 2021. Mechanical analysis of bi-functionally graded sandwich nanobeams. Advanced Nano Research 11 (1):55–71. doi:10.12989/anr.2021.11.1.055.
  • Mlzusawa, T. 1993. Vibration of rectangular mindlin plates with tapered thickness by the spline strip method. Computers and Structures 46 (3):451–63. doi:10.1016/0045-7949(93)90215-Y.
  • Nam, V. H., N. H. Nam, P. V. Vinh, D. N. Khoa, D. V. Thom, and P. V. Minh. 2019. A new efficient modified first-order shear model for static bending and vibration behaviors of two-layer composite plate. Advances in Civil Engineering 2019:1–17. doi:10.1155/2019/6814367.
  • Nam, V. H., P. V. Vinh, N. V. Chinh, D. V. Thom, and T. T. Hong. 2019. A new beam model for simulation of the mechanical behaviour of variable thickness functionally graded material beams based on modified first order shear deformation theory. Materials 12 (3):404. doi:10.3390/ma12030404.
  • Nerantzaki, M. S., and J. T. Katsikadelis. 1996. Buckling of plates with variable thickness - An analog equation solution. Engineering Analysis with Boundary Elements 18 (2):149–54. doi:10.1016/S0955-7997(96)00045-8.
  • Nguyen Thai, D., P. Van Minh, C. Phan Hoang, T. T. Duc, N. Nguyen Thi Cam, and D. Nguyen Thi. 2021. Bending of symmetric sandwich FGM beams with shear connectors. Mathematical Problems in Engineering 2021:1–15. doi:10.15/2021/7596300.
  • Qin, Z., S. Zhao, X. Pang, B. Safaei, and F. Chu. 2020. A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. International Journal of Mechanical Sciences 170:105341. doi:10.1016/j.ijmecsci.2019.105341.
  • Sahmani, S., and M. M. Aghdam. 2017. Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. International Journal of Mechanical Sciences 131–132:95–106. doi:10.1016/j.ijmecsci.2017.06.052.
  • Sahmani, S., and M. M. Aghdam. 2017. Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Composite Structures 179:77–88. doi:10.1016/j.compstruct.2017.07.064.
  • Sahmani, S., and M. M. Aghdam. 2018. Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells. Composites Part B: Engineering 132:258–74. doi:10.1016/j.compositesb.2017.09.004.
  • Sahmani, S., M. M. Aghdam, and T. Rabczuk. 2018. Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Composite Structures 186:68–78. doi:10.1016/j.compstruct.2017.11.082.
  • Sahmani, S., and A. M. Fattahi. 2018. Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Applied Mathematics and Mechanics 39 (4):561–80. doi:10.1007/s10483-018-2321-8.
  • Shingare, K. B., and S. I. Kundalwal. 2019. Static and dynamic response of graphene nanocomposite plates with flexoelectric effect. Mechanics of Materials 134:69–84. doi:10.1016/j.mechmat.2019.04.006.
  • Shu, L., X. Wei, T. Pang, X. Yao, and C. Wang. 2011. Symmetry of flexoelectric coefficients in crystalline medium. Journal of Applied Physics 110:104106. doi:10.1063/1.3662196.
  • Shufrin, I., and M. Eisenberger. 2006. Vibration of shear deformable plates with variable thickness – First-order and higher-order analyses. Journal of Sound Vibrations 290 (1–2):465–89. doi:10.1016/j.jsv.2005.04.003.
  • Soldatos, K. P. 1992. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica 94 (3–4):195–220. doi:10.1007/BF01176650.
  • Takashi, M., and Y. Jin. 1984. Application of the collocation method to vibration analysis of rectangular mindlin plates. Computers and Structures 18 (3):425–31. doi:10.1016/0045-7949(84)90062-2.
  • Thai Dung, N., L. M. Thai, T. Van Ke, T. T. Huong Huyen, and P. Van Minh. 2022. Nonlinear static bending analysis of microplates resting on imperfect two-parameter elastic foundations using modified couple stress theory. Comptes Rendus. Mécanique 350 (G1):121–41. doi:10.5802/crmeca.105.
  • Thai, H. T., and D. H. Choi. 2013. Finite element formulation of various four unknown shear deformation theories for functionally graded plates. Finite Elements in Analysis and Design 75:50–61. doi:10.1016/j.finel.2013.07.003.
  • Thai, L. M., D. T. Luat, V. B. Phung, P. Van Minh, and D. Van Thom. 2022. Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Archive of Applied Mechanics 92 (1):163–82. doi:10.1007/s00419-021-02048-3.
  • Tho, N. C., N. T. Thanh, T. D. Tho, P. Van Minh, and L. K. Hoa. 2021. Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (11):510. doi:10.1007/s40430-021-03189-w.
  • Thom, D. V., A. M. Zenkour, and D. H. Duc. 2021. Buckling of cracked FG plate resting on elastic foundation considering the effect of delamination phenomenon. Computers and Structures 273:114278. doi:10.1016/j.compstruct.2021.114278.
  • Van Phung, M., D. T. Nguyen, L. T. Doan, D. Van Nguyen, and T. Van Duong. 2022. Numerical investigation on static bending and free vibration responses of two-layer variable thickness plates with shear connectors. Iranian Journal of Science and Technology, Transaction of Mechanical Engineering. doi:10.1007/s40997-021-00459-9.
  • Vinh, P. V., N. T. Dung, N. C. Tho, D. V. Thom, and L. K. Hoa. 2021. Modified single variable shear deformation plate theory for free vibration analysis of rectangular FGM plates. Structures 29:1435–44. doi:10.1016/j.istruc.2020.12.027.
  • Wang, B., and X. F. Li. 2021. Flexoelectric effects on the natural frequencies for free vibration of piezoelectric nanoplates. Journal of Applied Physics 129:034102. doi:10.1063/5.0032343.
  • Wittrick, W. H., and C. H. Ellen. 1962. Buckling of tapered rectangular plates in compression. Aeronautical Quarterly 13 (4):308–26. doi:10.1017/S0001925900002547.
  • Yan, Z., and L. Y. Jiang. 2012. Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468 (2147):3458–75. doi:10.1098/rspa.2012.0214.
  • Yang, W., X. Liang, and S. Shen. 2015. Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mechanica 226 (9):3097–110. doi:10.1007/s00707-015-1373-8.
  • Yu, T., T. Q. Bui, S. Yin, D. H. Doan, C. T. Wu, T. V. Do, and S. Tanaka. 2016. On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis. Computers and Structures 136:684–95. doi:10.1016/j.compstruct.2015.11.002.
  • Yue, Y. 2020. Nonlinear vibration of the flexoelectric nanoplate with surface elastic electrodes under active electric loading. Acta Mechanica Solida Sinica 33 (6):864–78. doi:10.1007/s10338-020-00169-w.
  • Zeng, S., B. L. Wang, and K. F. Wang. 2019. Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Composite Structures 207:340–51. doi:10.1016/j.compstruct.2018.09.040.
  • Zhang, Z., Z. Yan, and L. Jiang. 2014. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Journal of Applied Physics 116:014307. doi:10.1063/1.4886315.
  • Zhu, R., X. Zhang, S. Zhang, Q. Dai, Z. Qin, and F. Chu. 2022. Modeling and topology optimization of cylindrical shells with partial CLD treatment. International Journal of Mechanical Sciences 220:107145. doi:10.1016/j.ijmecsci.2022.107145.
  • Żur, K. K., M. Arefi, J. Kim, and J. N. Reddy. 2020. Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Composites Part B: Engineering 182:107601. doi:10.1016/j.compositesb.2019.107601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.