205
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design and kinematic analysis of the four-level rigid trunk mechanism based on 4-SPS/U

, , , &
Pages 72-101 | Received 18 Jan 2022, Accepted 08 Jun 2022, Published online: 21 Jul 2022

References

  • Beira, R. M. Lopes, M. Praca, J. Santos-Victor, A. Bernardino, G. Metta, F. Becchi, and R. Saltaren. 2006. Design of the robot-cub (i Cub) head. IEEE International Conference on Robotics and Automation, Orlando, Florida, 94–100.
  • Carvalho-Joao, C. M., and R. Silvestre-Tadeu. 2016. Motion analysis of a six-legged robot using Bennett's linkage as leg. Mechanics Based Design of Structures and Machines 44 (1-2):86–95. doi:10.1080/15397734.2015.1051229.
  • Chen, X., L. Chen, and X. Liang. 2014. Kinematics and workspace analysis of a novel 4-DOF redundant actuation parallel mechanism. Transactions of the Chinese Society for Agricultural Machinery 8 (45):307–13. doi:10.6041/j.issn.1000-1298.2014.08.049.
  • Chen, Z., S. Wang, J. Wang, K. Xu, X. Wang, D. Liu, T. Lei, and J. Si. 2020. Motion drive and multi-mode control method of an electric parallel six wheel-legged robot. Robot 42 (5):534–49. doi:10.13973/j.cnki.robot.190524.
  • Cui, Y., Z. Luo, J. Shang, and Z. Zhang. 2018. Machine design of a reconfigurable wheel-track hybrid mobile robot with multi-locomotion. Journal of Harbin Institute of Technology 50 (7):80–6. doi:10.11918/j.issn.0367-6234.201711030.
  • Deng, Q., S. Wang, W. Xu, J. Mo, and Q. Liang. 2012. Quasi passive bounding of a quadruped model with articulated spine. Mechanism and Machine Theory 52:232–42. doi:10.1016/j.mechmachtheory.2012.02.003.
  • Deng, L., and L. Zhao. 2011. Obstacle surmounting analysis of robot for under-mine rescue. Journal of Henan Polytechnic University (Natural Science) 30 (5):568–70.
  • De-Viragh, Y., M. Bjelonic, C. D. Bellicoso, F. Jenelten, and M. Hutter. 2019. Trajectory optimization for wheeled-legged quadrupedal robots using linearized ZMP constraints. IEEE Robotics and Automation Letters 4 (2):1633–40. doi:10.1109/LRA.2019.2896721.
  • Feng, Y. 2013. Study on design method of a wheel-legged mobile robot. Master's thesis, School of National University of Defense Technology, Changsha, Hunan, China.
  • Guo, A., T. Jiang, J. Li, Y. Cui, J. Li, and Z. Chen. 2021. Design of a small wheel-foot hybrid firefighting robot for infrared visual fire recognition. Mechanics Based Design of Structures and Machines 1–19. doi:10.1080/15397734.2021.1966307.
  • Huang, Z, and D. Zeng. 2016. Calculation of degrees of freedom of mechanism: Principles and methods. Beijing: Higher Education Press: 1–273.
  • Huang, H. 2016. A 3-DOF series-parallel structure torso design in humanoid robots. Master's thesis, Beijing Institute of Technology, Beijing, China.
  • Ke, X, ., J. , Wang, Y. He, S. Wang, and J. Zhao. 2017. Active/passive compliance control of hydraulic legged robot based on force feed back. Journal of Mechanical Engineering 53 (1):13–20. doi:10.3901/JME.2017.01.013.
  • Kenneally, G, and D. E. Koditschek. 2015. Leg design for energy management in an electromechanical robot. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, 5712–5718.
  • Kuindersma, S., R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, and R. Tedrake. 2016. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots 40 (3):429–55. doi:10.1007/s10514-015-9479-3.
  • Lei, J., H. Yu, and T. Wang. 2016. Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot. Chinese Journal of Mechanical Engineering 29 (1):11–20. doi:10.3901/CJME.2015.1016.123.
  • Li, J., S. Li, C. Tao, R. Ji, C. Xu, and Z. Zhang. 2016. Parallel 2-UPS/RRR ankle rehabilitation mechanism and kinematic performance analysis. Robot 38 (2):145–53. doi:10.13973/j.cnki.robot.2016.0144.
  • Li, D., X. Zhang, K. Zhou, and J. Gong. 2013. Design and evaluation of the compliant structure for a quadruped robot. Artificial Intelligence and Robotics Research 2 (1):1–9. doi:10.12677/AIRR.2013.21001.
  • McGuire, K. N., C. De Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon. 2019. Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Science Robotics 4 (35):1–14. aaw9710 doi:10.1126/scirobotics.
  • Nagatani, K., H. Kinoshita, K. Yoshida, K. Tadakuma, and E. Koyanagi. 2011. Development of leg-track hybrid locomotion to traverse loose slopes and irregular terrain. Journal of Field Robotics 28 (6):950–60. doi:10.1002/rob.20415.
  • Niu, L., L. Ding, H. Gao, H. Yang, Y. Su, and N. Li. 2021. Review of actuation, modeling and simulation in soft-legged robot. Journal of Mechanical Engineering 57 (19):1–20.
  • Ogura, Y. H. Aikawa, K. Shimomura, H. Kondo, and A. Morishima. 2006. Development of a new humanoid robot WABIAN-2. IEEE International Conference on Robotics and Automation. Orlando, Florida, 76–81.
  • Ottaviano, E., S. Grande, and M. Ceccarelli. 2010. A biped walking mechanism for a rickshaw robot. Mechanics Based Design of Structures and Machines 38 (2):227–42. doi:10.1080/15397731003645008.
  • Playter, R. M. Buehler, and M. Raibert. 2006. Big dog. SPIE 6230, Unmanned Systems Technology VIII, 62302O. doi:10.1117/12.684087.
  • Portman, V. T., V. S. Chapsky, and Y. Shneor. 2012. Workspace of parallel kinematics machines with minimum stiffness limits: Collinear stiffness value based approach. Mechanism and Machine Theory 49:67–86. doi:10.1016/j.mechmachtheory.2011.11.002.
  • Quintero-Riaza, H. F., L. A. Mejía-Calderón, and M. Díaz-Rodríguez. 2019. Synthesis of planar parallel manipulators including dexterity, force transmission and stiffness index. Mechanics Based Design of Structures and Machines 47 (6):680–702. doi:10.1080/15397734.2019.1615503.
  • Riabtsev, M., V. Petuya, M. Urízar, and E. Macho. 2020. Design and analysis of an active 2-DOF lockable Joint. Mechanics Based Design of Structures and Machines :1–25. doi:10.1080/15397734.2020.1784203.
  • Sandini, G. G. Metta, and D. Vernon. 2008. The i Cub humanoid robot: An open platform for research in embodied cognition. The 8th Workshop on Performance Metrics for Intelligent Systems. Gaithersburg, 50–56.
  • Semini, C., V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, and D. G. Caldwell. 2017. Design of the hydraulically actuated, torque-controlled quadruped robot hyq2max. IEEE/ASME Transactions on Mechatronics 22 (2):113–635. doi:10.1109/TMECH.2016.2616284.
  • Seok, S., A. Wang, M. Yee-Chuah, D. Jin-Hyun, J. Lee, D. M. Otten, J. H. Lang, and S. Kim. 2015. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot. IEEE/ASME Transactions on Mechatronics 20 (3):1117–29. doi:10.1109/TMECH.2014.2339013.
  • Sun, J., Z. Sun, P. Xin, B. Liu, Q. Wei, and C. Yan. 2021. Review on development of legged robots for deep space landing exploration. China Mechanical Engineering 32 (15):1765–75.
  • Takuma, T. M. Ikeda, and T. Masuda. 2010. Facilitating multi-modal locomotion in a quadruped robot utilizing passive oscillation of the spine structure. The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, Taiwan, 4940–4945.
  • Taylor, A. T., T. A. Berrueta, and T. D. Murphey. 2021. Active learning in robotics: A review of control principles. Mechatronics 77:102576–19. doi:10.1016/j.mechatronics.2021.102576.
  • Wang, T., Y. Hao, X. Yang, and L. Wen. 2017. Soft robotics: Structure, actuation, sensing and control. Journal of Mechanical Engineering 53 (13):1–13. doi:10.3901/JME.2017.13.001.
  • Wiedebach, G. S. Bertrand, T. Wu, L. Fiorio, S. McCrory, R. Griffin, F. Nori, and J. Pratt. 2016. Walking on partial footholds including line contacts with the humanoid robot atlas. IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). Cancun, Mexico: International Robot for Optical Engineering,1312–1319.
  • Xiao, J., Y. Jiang, X. Fang, and B. Fu. 2019. A kind of tracked leg arm composite substation charged water washing robot. Automation & Instrumentation 34 (8):39–46. doi:10.19557/j.cnki.1001-9944.2019.08.009.
  • Xie, Z., Y. Jia, Q. Shao, and X. Gan. 2018. Analysis the working space and kinematics of the micro 3-PSP parallel mechanism. Journal of Mechanical Strength 4 (40):915–22. doi:10.16579/j.issn.1001.9669.2018.04.025.
  • Xu, F., F. Meng, B. Fan, G. Peng, J. Shen, and G. Jiang. 2019. Review of driving methods, modeling and application in soft robots. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition) 39 (03):64–75. doi:10.14132/j.cnki.1673-5439.2019.03.010.
  • Xu, K., S. Wang, B. Yue, J. Wang, F. Guo, and Z. Chen. 2020. Obstacle-negotiation performance on challenging terrain for a parallel leg-wheeled robot. Journal of Mechanical Science and Technology 34 (1):377–86. doi:10.1007/s12206-019-1237-6.
  • Yu, Z., Q. Huang, X. Chen, W. Zhang, and J. Gao. 2014. Design of a redundant manipulator for playing table tennis towards human-like stroke patterns. Advances in Mechanical Engineering 2014:1–11. doi:10.1155/2014/807458.
  • Yuan, X., Q. Li, H. Zhang, and X. Zhao. 2016. Orb-slam research of snake-like rescue robot. Science Technology and Engineering 16 (31):230–3.
  • Zang, H., and H. Fang. 2018. Performance analysis of a redundantly actuated parallel manipulator with suitable constraint branch. Journal of Beijing Jiaotong University 42 (1):134–8. doi:10.11860/j.issn.1673-0291.2018.01.020.
  • Zarkandi, S. 2011. Kinematics and singularity analysis of a parallel manipulator with three rotational and one translational DOFs. Mechanics Based Design of Structures and Machines 39 (3):392–407. doi:10.1080/15397734.2011.559149.
  • Zarkandi, S. 2021. Kinematic analysis and workspace optimization of a novel 4RPSP + PS parallel manipulator. Mechanics Based Design of Structures and Machines 49 (1):131–53. doi:10.1080/15397734.2020.1725564.
  • Zhu, C., X. Liu, and W. Liu. 2021. Research on structural optimization of 3-TPT parallel mechanism based on stiffness characteristics. Mechanics Based Design of Structures and Machines 49 (2):256–70. doi:10.1080/15397734.2019.1686990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.