461
Views
6
CrossRef citations to date
0
Altmetric
Articles

Vibration response analysis of the bi-directional porous functionally graded piezoelectric (BD-FGP) plate

ORCID Icon &
Pages 126-151 | Received 06 Mar 2022, Accepted 05 Jul 2022, Published online: 26 Jul 2022

References

  • Ansari, R, and R. Gholami. 2016a. Nonlocal free vibration in the pre-and post-buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions. Smart Materials and Structures 25 (9):095033. doi:10.1088/0964-1726/25/9/095033.
  • Ansari, R, and R. Gholami. 2016b. Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. International Journal of Applied Mechanics 08 (04):1650053. doi:10.1142/S1758825116500538.
  • Ansari, R, and R. Gholami. 2017. Size-dependent buckling and postbuckling analyses of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. International Journal of Structural Stability and Dynamics 17 (01):1750014. doi:10.1142/S0219455417500146.
  • Ansari, R., R. Hassani, R. Gholami, and H. Rouhi. 2021. Free vibration analysis of postbuckled arbitrary-shaped FG-GPL-reinforced porous nanocomposite plates. Thin-Walled Structures 163:107701. doi:10.1016/j.tws.2021.107701.
  • Babaei, M., K. Asemi, and F. Kiarasi. 2020. Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method. Mechanics Based Design of Structures and Machines 0 (0):1–25. doi:10.1080/15397734.2020.1864401.
  • Baferani, A. H., A. R. Saidi, and H. Ehteshami. 2011. Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Composite Structures 93 (7):1842–53. doi:10.1016/j.compstruct.2011.01.020.
  • Bathe, K. J. 1996. Finite element procedures. New Jersey: Prentic-Hall;
  • Bergan, P. G, and R. W. Clough. 1972. Convergence criteria of iteration process. Journals : The American Institute of Aeronautics and Astronautics - AIAA. 10 (8):1107–8. doi:10.2514/3.50313.
  • Chen, X., L. Chen, S. Huang, M. Li, and X. Li. 2021. Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections. Applied Mathematical Modelling 93:443–66. doi:10.1016/j.apm.2020.12.033.
  • Dastjerdi, S., M. Malikan, R. Dimitri, and F. Tornabene. 2021. Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Composite Structures 255:112925. doi:10.1016/j.compstruct.2020.112925.
  • Ebrahimi, F, and M. R. Barati. 2018. Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. Journal of Vibration and Control 24 (3):549–64. doi:10.1177/1077546316646239.
  • Ebrahimi, F. 2013. Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment. Mechanics of Advanced Materials and Structures 20 (10):854–70. doi:10.1080/15376494.2012.677098.
  • Ebrahimi, F., M. R. Barati, and F. Tornabene. 2019. Mechanics of nonlocal advanced magneto-electro-viscoelastic plates. Structural Engineering and Mechanics, An Int'l Journal 71 (3):257–69.
  • Esmaeilzadeh, M, and M. Kadkhodayan. 2019. Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping. Aerospace Science and Technology 93:105333. doi:10.1016/j.ast.2019.105333.
  • Fakhari, V., A. Ohadi, and P. Yousefian. 2011. Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment. Composite Structures 93 (9):2310–21. doi:10.1016/j.compstruct.2011.03.019.
  • Gholami, R., A. Darvizeh, R. Ansari, and F. Sadeghi. 2016. Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin's strain gradient elasticity theory. European Journal of Mechanics - A/Solids 58:76–88. doi:10.1016/j.euromechsol.2016.01.014.
  • He, X. Q., T. Y. Ng, S. Sivashanker, and K. M. Liew. 2001. Active control of FGM plates with integrated piezoelectric sensors and actuators. International Journal of Solids and Structures 38 (9):1641–55. doi:10.1016/S0020-7683(00)00050-0.
  • Huang, X. L, and H. S. Shen. 2006. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. Journal of Sound and Vibration 289 (1-2):25–53. doi:10.1016/j.jsv.2005.01.033.
  • Jha, D. K., T. Kant, and R. K. Singh. 2013. Free vibration response of functionally graded thick plates with shear and normal deformations effects. Composite Structures 96:799–823. doi:10.1016/j.compstruct.2012.09.034.
  • Jiashi, Y. 2005. An introduction to the theory of piezoelectricity. USA: Springer Science.
  • Koizumi, M. 1997. FGM activities in Japan. Composites Part B: Engineering 28 (1-2):1–4. doi:10.1016/S1359-8368(96)00016-9.
  • Kumar, P, and S. Harsha. 2021a. Response analysis of hybrid functionally graded material plate subjected to thermoelectro-mechanical loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235 (4):813–27. doi:10.1177/1464420720980031.
  • Kumar, P, and S. P. Harsha. 2020. Modal analysis of functionally graded piezoelectric material plates. Materials Today: Proceedings 28:1481–6. doi:10.1016/j.matpr.2020.04.825.
  • Kumar, P, and S. P. Harsha. 2021b. Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Composite Structures 267:113901. doi:10.1016/j.compstruct.2021.113901.
  • Kumar, P, and S. P. Harsha. 2021c. Vibration response analysis of sigmoidal functionally graded piezoelectric (FGP) porous plate under thermo-electric environment. Mechanics Based Design of Structures and Machines:1–31. doi:10.1080/15397734.2021.1971090.
  • Kumar, P, and S. P. Harsha. 2021d. Vibration response analysis of PZT-4/PZT-5H based functionally graded tapered plate subjected to electro-mechanical loading. Mechanics Research Communications 116:103765. doi:10.1016/j.mechrescom.2021.103765.
  • Kumar, P, and S. P. Harsha. 2022a. Electroelastic static and vibration response analysis of sigmoid PZT-5A/Pt based smart functionally graded (SFG) plate. International Journal of Structural Stability and Dynamics 2250155. doi:10.1142/S0219455422501553.
  • Kumar, P, and S. P. Harsha. 2022b. Static and vibration response analysis of sigmoid function-based functionally graded piezoelectric non-uniform porous plate. Journal of Intelligent Material Systems and Structures:1045389X2210774. doi:10.1177/1045389X221077433.
  • Kumar, P, and S. P. Harsha. 2022c. Static, buckling and vibration response analysis of three-layered functionally graded piezoelectric plate under thermo-electric mechanical environment. Journal of Vibration Engineering & Technologies 10 (4):1561–38. doi:10.1007/s42417-022-00467-2.
  • Leissa, A. W. 1973. The free vibration of rectangular plates. Journal of Sound Vibrations. 31 (3):257–93. doi:10.1016/S0022-460X(73)80371-2.
  • Li, L, and Y. Hu. 2016. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science 107:77–97. doi:10.1016/j.ijengsci.2016.07.011.
  • Li, S., S. Zheng, and D. Chen. 2020. Porosity-dependent isogeometric analysis of bi-directional functionally graded plates. Thin-Walled Structures 156:106999. doi:10.1016/j.tws.2020.106999.
  • Lieu, Q. X., S. Lee, J. Kang, and J. Lee. 2018. Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis. Composite Structures.192:434–51. doi:10.1016/j.compstruct.2018.03.021.
  • Liu, F.-L, and K. M. Liew. 1999. Analysis of vibrating thick rectangular plates with mixed boundary constraints using differential quadrature element method. Journal of Sound and Vibration 225 (5):915–34. doi:10.1006/jsvi.1999.2262.
  • Merzouki, T., H. M. S. Ahmed, A. Bessaim, M. Haboussi, R. Dimitri, and F. Tornabene. 2022. Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory. Mathematics and Mechanics of Solids 27 (1):66–92. doi:10.1177/10812865211011759.
  • Rao, S. S, and M. Sunar. 1994. Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey. Applied Mechanics Reviews 47 (4):113–23. doi:10.1115/1.3111074.
  • Reddy, J. N, and Z. Q. Cheng. 2001. Three-dimensional solutions of smart functionally graded plates. Journal of Applied Mechanics 68 (2):234–41. doi:10.1115/1.1347994.
  • Reddy, J. N. 1997. Mechanics of laminated composite plates. Boca Raton: CRC Press.
  • Reddy, J. N. 2002. Energy principles and variational methods in applied mechanics. John Wiley & Sons.
  • Reddy, J. N. 2007. Theory and analysis of elastic plates and shells. Boca Raton; CRC Press.
  • Reddy, J. N. 2009. An Introduction to Finite Element Method. 3rd ed. New York: TataMcGraw-Hill Edition.
  • Salmani, R., R. Gholami, R. Ansari, and M. Fakhraie. 2021. Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets. The European Physical Journal Plus 136 (1):1–19. doi:10.1140/epjp/s13360-020-01009-z.
  • Singh, S. J, and S. P. Harsha. 2018. Static analysis of functionally graded plate using nonlinear classical plate theory with Von-Karman strains. International Journal of Applied Mechanics and Engineering 23 (3):707–26. doi:10.2478/ijame-2018-0039.
  • Singh, S. J, and S. P. Harsha. 2019. Nonlinear dynamic analysis of sandwich S-FGM plate resting on Pasternak foundation under thermal environment. European Journal of Mechanics - A/Solids 76:155–79. doi:10.1016/j.euromechsol.2019.04.005.
  • Valizadeh, N., S. Natarajan, O. A. Gonzalez-Estrada, T. Rabczuk, T. Q. Bui, and S. P. Bordas. 2013. NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Composite Structures 99:309–26. doi:10.1016/j.compstruct.2012.11.008.
  • Van Do, T., D. K. Nguyen, N. D. Duc, D. H. Doan, and T. Q. Bui. 2017. Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory. Thin-Walled Structures 119:687–99. doi:10.1016/j.tws.2017.07.022.
  • Wu, C.-P, and L.-T. Yu. 2019. Free vibration analysis of bi-directional functionally graded annular plates using finite annular prism methods. Journal of Mechanical Science and Technology 33 (5):2267–79. doi:10.1007/s12206-019-0428-5.
  • Yang, J., S. Kitipornchai, and K. M. Liew. 2003. Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates. Computer Methods in Applied Mechanics Engineering 192 (35-36):3861–85. doi:10.1016/S0045-7825(03)00387-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.