133
Views
5
CrossRef citations to date
0
Altmetric
Articles

Higher-order finite element solution of graphene platelets reinforced nanocomposite curved panels with uniform/non-uniform porosity

, &
Pages 195-214 | Received 02 Dec 2021, Accepted 11 Jul 2022, Published online: 02 Aug 2022

References

  • Arefi, M., E. M. Bidgoli, R. Dimitri, and F. Tornabene. 2018. Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerospace Science and Technology 81:108–17. doi:10.1016/j.ast.2018.07.036.
  • Balandin, A. A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. 2008. Superior thermal conductivity of single-layer graphene. Nano Letters 8 (3):902–7. doi:10.1021/nl0731872.
  • Barati, M. R., and A. M. Zenkour. 2017. Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Composite Structures 181:194–202. doi:10.1016/j.compstruct.2017.08.082.
  • Barati, M. R., and A. M. Zenkour. 2019. Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mechanics of Advanced Materials and Structures 26 (6):503–11. doi:10.1080/15376494.2017.1400622.
  • Chen, D., J. Yang, and S. Kitipornchai. 2017. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Composites Science and Technology 142:235–45. doi:10.1016/j.compscitech.2017.02.008.
  • Chen, D., J. Yang, J. Schneider, S. Kitipornchai, and L. Zhang. 2022a. Impact response of inclined self-weighted functionally graded porous beams reinforced by graphene platelets. Thin-Walled Structure 179:109501. doi:10.1016/j.tws.2022.109501.
  • Chen, D., S. Rezaei, P. L. Rosendahl, B. Xu, and J. Schneider. 2022b. Multiscale modelling of functionally graded porous beams: Buckling and vibration analyses. Engineering Structures 266:114568. doi:10.1016/j.engstruct.2022.114568.
  • Cook, R. D., D. S. Malkus, M. E. Plesha, and R. J. Witt. 2009. Concepts and applications of finite element analysis, 4th ed. Singapore: John Wiley and Sons.
  • Dong, Y. H., Y. H. Li, D. Chen, and J. Yang. 2018. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Composites Part B: Engineering 145:1–13. doi:10.1016/j.compositesb.2018.03.009.
  • Fang, M., K. Wang, H. Lu, Y. Yang, and S. Nutt. 2009. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry 19 (38):7098–105. doi:10.1039/b908220d.
  • Huang, X., X. Qi, F. Boey, and H. Zhang. 2012. Graphene-based composites. Chemical Society Reviews 41 (2):666–86. doi:10.1039/c1cs15078b.
  • Kar, V. R., and S. K. Panda. 2016. Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method. Journal of Vibration and Control 22 (7):1935–49. doi:10.1177/1077546314545102.
  • Kitipornchai, S., D. Chen, and J. Yang. 2017. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials and Design 116:656–65. doi:10.1016/j.matdes.2016.12.061.
  • Lee, C., X. Wei, J. W. Kysar, and J. Hone. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (New York, NY) 321 (5887):385–8. doi:10.1126/science.1157996.
  • Liu, D., D. Chen, J. Yang, and S. Kitipornchai. 2021. Buckling and free vibration of axially functionally graded graphene reinforced nanocomposite beams. Engineering Structures 249:113327. doi:10.1016/j.engstruct.2021.113327.
  • Liu, D., S. Kitipornchai, W. Chen, and J. Yang. 2018. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures 189:560–9. doi:10.1016/j.compstruct.2018.01.106.
  • Moradi-Dastjerdi, R., and K. Behdinan. 2021. Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments. Aerospace Science and Technology 110:106476. doi:10.1016/j.ast.2020.106476.
  • Nejati, M., A. Eslampanah, and M. Najafizadeh. 2016. Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load. International Journal of Applied Mechanics 8 (1):165008. doi:10.1142/S1758825116500083.
  • Nguyen, L. B., N. V. Nguyen, C. H. Thai, A. M. J. Ferreira, and H. Nguyen-xuan. 2019. An isogeometric Bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Composite Structures 214:227–45. doi:10.1016/j.compstruct.2019.01.077.
  • Priyanka, R., C. M. Twinkle, and J. Pitchaimani. 2021. Stability and dynamic behavior of porous FGM beam: Influence of graded porosity, graphene platelets, and axially varying loads. Engineering with Computers. doi:10.1007/s00366-021-01478-5.
  • Reddy, J. N. 2004. Mechanics of laminated composite plates and shells: Theory and analysis, 2nd ed. New York: CRC Press.
  • Reddy, R. M. R., W. Karunasena, and W. Lokuge. 2018. Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions. Aerospace Science and Technology 78:147–56. doi:10.1016/j.ast.2018.04.019.
  • Renteria, J. D., D. L. Nika, and A. A. Balandin. 2014. Graphene thermal properties: Applications in thermal management and energy storage. Applied Sciences 4 (4):525–47. doi:10.3390/app4040525.
  • Reza, A., R. Bahaadini, and K. Majidi-mozafari. 2019. On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading. Composites Part B 164:778–99. doi:10.1016/j.compositesb.2019.01.074.
  • Shen, H., Y. Xiang, and F. Lin. 2017. Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Computer Methods in Applied Mechanics and Engineering 319:175–93. doi:10.1016/j.cma.2017.02.029.
  • Shen, H., Y. Xiang, F. Lin, and D. Hui. 2017. Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Composites Part B 119:67–78. doi:10.1016/j.compositesb.2017.03.020.
  • Shtein, M., R. Nadiv, M. Buzaglo, and O. Regev. 2015. Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Applied Materials & Interfaces 7 (42):23725–30. doi:10.1021/acsami.5b07866.
  • Song, M., S. Kitipornchai, and J. Yang. 2017. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composite Structures 159:579–88. doi:10.1016/j.compstruct.2016.09.070.
  • Song, M., X. Li, S. Kitipornchai, Q. Bi, and J. Yang. 2019. Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates. Nonlinear Dynamics 95 (3):2333–52. doi:10.1007/s11071-018-4695-y.
  • Vadukumpully, S., J. Paul, N. Mahanta, and S. Valiyaveettil. 2011. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49 (1):198–205. doi:10.1016/j.carbon.2010.09.004.
  • Van, P. P., M. A. Wahab, K. M. Liew, S. P. A. Bordas, and H. N. Xuan. 2015. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Composite Structures 123:137–49. doi:10.1016/j.compstruct.2014.12.021.
  • Wang, Y., C. Feng, Z. Zhao, and J. Yang. 2018. Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL). Composite Structures 202:38–46. doi:10.1016/j.compstruct.2017.10.005.
  • Yang, J., D. Chen, and S. Kitipornchai. 2018. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures 193:281–94. doi:10.1016/j.compstruct.2018.03.090.
  • Yang, J., H. Wu, and S. Kitipornchai. 2017. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Composite Structures 161:111–8. doi:10.1016/j.compstruct.2016.11.048.
  • Yang, Z., J. Yang, A. Liu, and J. Fu. 2018. Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches. Composite Structures 204:301–12. doi:10.1016/j.compstruct.2018.07.072.
  • Zhao, X., Q. Zhang, D. Chen, and P. Lu. 2010. Enhanced mechanical properties of graphene-based polyvinyl alcohol composites. Macromolecules 43 (5):2357–63. doi:10.1021/ma902862u.
  • Zhu, P., Z. X. Lei, and K. M. Liew. 2012. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures 94 (4):1450–60. doi:10.1016/j.compstruct.2011.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.