103
Views
5
CrossRef citations to date
0
Altmetric
Articles

Energy optimal point-to-point motion profile optimization

, , , , , & show all
Pages 239-256 | Received 30 Dec 2021, Accepted 11 Jul 2022, Published online: 08 Aug 2022

References

  • Baggetta, M., P. Bilancia, M. Pellicciari, and G. Berselli. 2021. An integrated approach for motion law optimization in partially compliant slider-crank mechanisms. In 2021 20th International Conference on Advanced Robotics, ICAR 2021, 695–700. IEEE.
  • Berselli, G., F. Balugani, M. Pellicciari, and M. Gadaleta. 2016. Energy-optimal motions for servo-systems: A comparison of spline interpolants and performance indexes using a CAD-based approach. Robotics and Computer-Integrated Manufacturing 40:55–65. doi:10.1016/j.rcim.2016.01.003.
  • Betts, J. T. 1998. A survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics 21 (2):193–207. doi:10.2514/2.4231.
  • Biagiotti, L, and C. Melchiorri. 2021. Optimization of generalized S-curve trajectories for residual vibration suppression and compliance with kinematic bounds. IEEE/ASME Transactions on Mechatronics 26 (5):2724–34. doi:10.1109/TMECH.2020.3045504.
  • Bo, H. 2008. Electric Motors—Alignment of Standards and Best Practice Programmes with APEC. Final Report.
  • Boryga, M, and A. Graboś. 2009. Planning of manipulator motion trajectory with higher-degree polynomials use. Mechanism and Machine Theory 44 (7):1400–19. doi:10.1016/j.mechmachtheory.2008.11.003.
  • Boscariol, P., R. Caracciolo, D. Richiedei, and A. Trevisani. 2020. Energy optimization of functionally redundant robots through motion design. Applied Sciences (Switzerland) 10 (9):3022–13. doi:10.3390/app10093022.
  • Brancati, R., C. Rossi, and F. Timpone. 2007. Dynamic behavior and motion planning of a robot arm with non-rigid transmission. Mechanics Based Design of Structures and Machines 35 (4):347–62. doi:10.1080/15397730701606627.
  • Carabin, G, and L. Scalera. 2020. On the trajectory planning for energy efficiency in industrial robotic systems. Robotics 9 (4):89–13. doi:10.3390/robotics9040089.
  • Carabin, G, and R. Vidoni. 2021. Energy-saving optimization method for point-to-point trajectories planned via standard primitives in 1-DoF mechatronic systems. The International Journal of Advanced Manufacturing Technology 116 (1-2):331–4. doi:10.1007/s00170-021-07277-y.
  • Carabin, G., E. Wehrle, and R. Vidoni. 2017. A review on energy-saving optimization methods for robotic and automatic systems. Robotics 6 (4):39–21. doi:10.3390/robotics6040039.
  • Cheng, Q., W. Xu, Z. Liu, X. Hao, and Y. Wang. 2021. Optimal trajectory planning of the variable-stiffness flexible manipulator based on CADE algorithm for vibration reduction Control. Frontiers in Bioengineering and Biotechnology 9:766495–14. doi:10.3389/fbioe.2021.766495.
  • Chettibi, T., H. Lehtihet, M. Hadda, and S. Hanchi. 2004. Minimum cost trajectory planning for industrial robots. European Journal of Mechanics—A/Solids 23 (4):703–15. doi:10.1016/j.euromechsol.2004.02.006.
  • Delchev, K, and E. Zahariev. 2008. Computer simulation-based synthesis of learning-control law of robots. Mechanics Based Design of Structures and Machines 36 (3):225–48. doi:10.1080/15397730802275405.
  • Diehl, M., H. G. Bock, H. Diedam, and P.-B. Wieber. 2006. Fast direct multiple shooting algorithms for optimal robot control. In Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control, eds. M. Diehl and K. Mombaur, 65–93. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Dresig, H, and F. Holzweißig. 2010. Dynamics of machinery: Theory and applications. Berlin Heidelberg: Springer.
  • Ellis, G. 2012. Control system design guide (4th ed.). Amsterdam: Elsevier.
  • Gadaleta, M., M. Pellicciari, and G. Berselli. 2019. Optimization of the energy consumption of industrial robots for automatic code generation. Robotics and Computer-Integrated Manufacturing 57:452–64. doi:10.1016/j.rcim.2018.12.020.
  • Gasparetto, A, and V. Zanotto. 2007. A new method for smooth trajectory planning of robot manipulators. Mechanism and Machine Theory 42 (4):455–71. doi:10.1016/j.mechmachtheory.2006.04.002.
  • Glodde, A, and M. Afrough. 2014. Energy efficiency evaluation of an underactuated robot in comparison to traditional robot kinematics. Procedia CIRP 23 (C):127–30. doi:10.1016/j.procir.2014.10.087.
  • Ha, J. L., R. F. Fung, K. Y. Chen, and S. C. Hsien. 2006. Dynamic modeling and identification of a slider-crank mechanism. Journal of Sound and Vibration 289 (4-5):1019–44. doi:10.1016/j.jsv.2005.03.011.
  • Holland, J. H. 1992. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence. Cambridge, MA, USA: MIT Press.
  • Hsu, Y. L., M. S. Huang, and R. F. Fung. 2014. Energy-saving trajectory planning for a toggle mechanism driven by a PMSM. Mechatronics 24 (1):23–31. doi:10.1016/j.mechatronics.2013.11.004.
  • Huang, J., P. Hu, K. Wu, and M. Zeng. 2018. Optimal time-jerk trajectory planning for industrial robots. Mechanism and Machine Theory 121:530–44. doi:10.1016/j.mechmachtheory.2017.11.006.
  • Kelly, M. P. 2017. Transcription methods for trajectory optimization: A beginners tutorial. SIAM Review 59 (4):849–904. doi:10.1137/16M1062569.
  • Kiel, E. 2008. Drive solutions. Berlin, Heidelberg: Springer.
  • Kuenzer, U, and M. L. Husty. 2016. Generation and optimal choice of joint trajectories using all solutions of inverse kinematics of general 6-R robots. Mechanics Based Design of Structures and Machines 44 (1-2):146–59. doi:10.1080/15397734.2016.1152192.
  • Lee, D, and C. W. Ha. 2020. 9) Optimization process for polynomial motion profiles to achieve fast movement with low vibration. IEEE Transactions on Control Systems Technology 28 (5):1892–901. doi:10.1109/TCST.2020.2998094.
  • Majidian, H. 2017. On the decay rate of Chebyshev coefficients. Applied Numerical Mathematics 113:44–53. doi:10.1016/j.apnum.2016.11.004.
  • Mezzadri, F, and E. Galligani. 2016. A Chebyshev technique for the solution of optimal control problems with nonlinear programming methods. Mathematics and Computers in Simulation 121:95–108. doi:10.1016/j.matcom.2015.08.023.
  • Nguyen, K. D., I. M. Chen, and T. C. Ng. 2007. Planning Algorithms for S-curve Trajectories. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Volume 1, 1–6.
  • Nocedal, J, and S. Wright. 2006. Numerical optimization (2nd ed.). Berlin, Heidelberg: Springer Science & Business Media.
  • Park, J. S. 1996. Motion profile planning of repetitive point-to-point control for maximum energy conversion efficiency under acceleration conditions. Mechatronics 6 (6):649–63. doi:10.1016/0957-4158(96)00012-8.
  • Pellicciari, M., G. Berselli, and F. Balugani. 2015. On designing optimal trajectories for servo-actuated mechanisms: Detailed virtual prototyping and experimental evaluation. IEEE/ASME Transactions on Mechatronics 20 (5):2039–52. doi:10.1109/TMECH.2014.2361759.
  • Piazzi, A, and A. Visioli. 1998. Global minimum-time trajectory planning of mechanical manipulators using interval analysis. International Journal of Control 71 (4):631–52. doi:10.1080/002071798221713.
  • Rao, A. V. 2014. Trajectory optimization: A survey. In Optimization in automotive control and optimal systems, eds. H. Waschl, I. Kolmanovsky, M. Steinbuch, and L. del Re, Vo. 455. Lecture Notes in Control and Information Sciences, 3–18. Cham: Springer International Publishing.
  • Richiedei, D, and A. Trevisani. 2016. Analytical computation of the energy-efficient optimal planning in rest-to-rest motion of constant inertia systems. Mechatronics 39:147–59. doi:10.1016/j.mechatronics.2016.05.004.
  • Rizzoni, G, and J. Kearns. 2003. Principles and applications of electrical engineering. McGraw-Hill (London).
  • Shiller, Z. 1996. Time-energy optimal control of articulated systems with geometric path constraints. Journal of Dynamic Systems, Measurement, and Control 118 (1):139–43. doi:10.1115/1.2801134.
  • Sollmann, K., M. Jouaneh, and D. Lavender. 2010. Dynamic modeling of a two-axis parallel H-frame-type XY positioning system. IEEE/ASME Transactions on Mechatronics 15 (2):280–90. doi:10.1109/TMECH.2009.2020823.
  • Thompson, W. J. 1994. Chebyshev polynomials: After the spelling the rest is easy. Computers in Physics 8 (2):161. doi:10.1063/1.4823278.
  • Van Oosterwyck, N., A. Ben Yahya, A. Cuyt, and S. Derammelaere. 2020. CAD based trajectory optimization of PTP motions using Chebyshev polynomials. In 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, pp. 403–408. IEEE.
  • Van Oosterwyck, N., F. Vanbecelaere, M. Haemers, D. Ceulemans, K. Stockman, and S. Derammelaere. 2019. CAD enabled trajectory optimization and accurate motion control for repetitive tasks. In 2019 IEEE 15th International Conference on Control and Automation (ICCA), 387–92. Edinburgh: IEEE.
  • Vanbecelaere, F., N. Van Oosterwyck, S. Derammelaere, A. Cuyt, M. Monte, and K. Stockman. 2022. On-line motion profile optimization for reciprocating mechanisms. Mechanism and Machine Theory 173:104833. doi:10.1016/j.mechmachtheory.2022.104833.
  • Vanbecelaere, F., S. Derammelaere, N. Nevaranta, J. De Viaene, F. Verbelen, K. Stockman, and M. Monte. 2020. Online tracking of varying inertia using a SDFT approach. Mechatronics 68:102361. doi:10.1016/j.mechatronics.2020.102361.
  • Vlassenbroeck, J, and R. Van Dooren. 1988. A Chebyshev technique for solving nonlinear optimal control problems. IEEE Transactions on Automatic Control 33 (4):333–40. doi:10.1109/9.192187.
  • Walsch, H., I. Kolmanovsky, M. Steinbuch, and L. del Re. 2014. Optimization and optimal control in automotive systems, Vol. 455. Lecture Notes in Control and Information Sciences. Cham: Springer International Publishing.
  • Wenzhong, G, and S. K. Porandla. 2005. Design optimization of a parallel hybrid electric powertrain. 2005 IEEE Vehicle Power and Propulsion Conference, VPPC 2005, 530–535. doi:10.1109/VPPC.2005.1554609.
  • Westphal, L. C. 2001. Handbook of control systems engineering. Springer US.
  • Wu, Z., J. Chen, T. Bao, J. Wang, L. Zhang, and F. Xu. 2022. A novel point-to-point trajectory planning algorithm for industrial robots based on a locally asymmetrical jerk motion profile. Processes 10 (4):728–18. doi:10.3390/pr10040728.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.