169
Views
5
CrossRef citations to date
0
Altmetric
Articles

Biaxial buckling analysis of an innovative active sandwich plate

ORCID Icon &
Pages 275-288 | Received 30 Mar 2022, Accepted 22 Jul 2022, Published online: 10 Aug 2022

References

  • Akhras, G, and W. Li. 2011. Stability and free vibration analysis of thick piezoelectric composite plates using spline finite strip method. International Journal of Mechanical Sciences 53 (8):575–84. doi: 10.1016/j.ijmecsci.2011.05.004.
  • Amir, S., M. Khorasani, and H. Babaakbar-Zarei. 2020. Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory. Journal of Sandwich Structures & Materials 22 (7):2186–209. doi: 10.1177/1099636218795385.
  • Ansari, R., T. Pourashraf, R. Gholami, and A. Shahabodini. 2016. Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Composites Part B: Engineering 90:267–77. doi: 10.1016/j.compositesb.2015.12.012.
  • Behdinan, K, and R. Moradi-Dastjerdi. 2021. Advanced multifunctional lightweight aerostructures: Design, development, and implementation. Hoboken, NJ: John Wiley & Sons Ltd.
  • Behdinan, K, and R. Moradi-Dastjerdi. 2022. Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate. Advanced Nano Research 12:593–603.
  • Berger, H., S. Kari, U. Gabbert, R. Rodriguez-Ramos, R. Guinovart, J. A. Otero, and J. Bravo-Castillero. 2005. An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. International Journal of Solids and Structures 42 (21–22):5692–714. doi: 10.1016/j.ijsolstr.2005.03.016.
  • Dastjerdi, S., M. Malikan, R. Dimitri, and F. Tornabene. 2020. Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Composite Structures 255:112925. doi: 10.1016/j.compstruct.2020.112925.
  • Fan, Z., X. Mo, C. Lou, Y. Yao, D. Wang, G. Chen, and J. G. Lu. 2005. Structures and electrical properties of Ag-tetracyanoquinodimethane organometallic nanowires. IEEE Transactions on Nanotechnology 4 (2):238–41. doi: 10.1109/TNANO.2004.837852.
  • Foroutan, M., F. Mohammadi, J. Alihemati, and A. Soltanimaleki. 2017. Dynamic analysis of functionally graded piezoelectric cylindrical panels by a three-dimensional mesh-free model. Journal of Intelligent Material Systems and Structures 28 (18):2516–27. doi: 10.1177/1045389X17689941.
  • Guo, H., X. Zhuang, and T. Rabczuk. 2019. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua 59 (2):433–56. doi: 10.32604/cmc.2019.06660.
  • Hajmohammad, M. H., M. S. Zarei, M. Sepehr, and N. Abtahi. 2018. Bending and buckling analysis of functionally graded annular microplate integrated with piezoelectric layers based on layerwise theory using DQM. Aerospace Science and Technology 79:679–88. doi: 10.1016/j.ast.2018.05.055.
  • Keleshteri, M. M., H. Asadi, and Q. Wang. 2017. Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method. Computer Methods in Applied Mechanics and Engineering 325:689–710. doi: 10.1016/j.cma.2017.07.036.
  • Khoa, N. D., H. T. Thiem, and N. D. Duc. 2019. Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. Mechanics of Advanced Materials and Structures 26 (3):248–59. doi: 10.1080/15376494.2017.1341583.
  • Kolahchi, R., B. Keshtegar, and M. H. Fakhar. 2020. Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm. Journal of Sandwich Structures & Materials 22 (1):3–27. doi: 10.1177/1099636217731071.
  • Kozioł, M, and P. Cupiał. 2022. The influence of the active control of internal damping on the stability of a cantilever rotor with a disc. Mechanics Based Design of Structures and Machines 50 (1):288–301. doi: 10.1080/15397734.2020.1717965.
  • Lancaster, P, and K. Salkauskas. 1981. Surface generated by moving least squares methods. Mathematics of Computation 37 (155):141–58. doi: 10.1090/S0025-5718-1981-0616367-1.
  • Ansari, M. H, and M. A. Karami. 2015. Energy harvesting from controlled buckling of piezoelectric beams. Smart Materials and Structures 24 (11):115005. doi: 10.1088/0964-1726/24/11/115005.
  • Meschino, M., L. Wang, H. Xu, R. Moradi-Dastjerdi, and K. Behdinan. 2021. Low-frequency nanocomposite piezoelectric energy harvester with embedded zinc oxide nanowires. Polymer Composites 42 (9):4573–85. doi: 10.1002/pc.26169.
  • Mishra, N., B. Krishna, R. Singh, and K. Das. 2017. Evaluation of effective elastic, piezoelectric, and dielectric properties of SU8/ZnO nanocomposite for vertically integrated nanogenerators using finite element method. Journal of Nanomaterials 2017:1–14. doi: 10.1155/2017/1924651.
  • Mishra, S. R., S. H. Fard, T. Sheikh, and K. Behdinan. 2022. Electromechanical performance of biocompatible piezoelectric thin-films. Actuators 11 (6):171. doi: 10.3390/act11060171.
  • Mohammadi, H. 2022. Isogeometric thermal buckling analysis of GPL reinforced composite laminated folded plates. Engineering Structures. 255:113905. doi: 10.1016/j.engstruct.2022.113905.
  • Momeni, K. 2014. A multiscale approach to nanocomposite electrical generators. Nano Energy 4:132–9. doi: 10.1016/j.nanoen.2013.12.012.
  • Moradi-Dastjerdi, R, and K. Behdinan. 2020. Thermo-electro-mechanical behavior of an advanced smart lightweight sandwich plate. Aerospace Science and Technology 106:106142. doi: 10.1016/j.ast.2020.106142.
  • Moradi-Dastjerdi, R, and K. Behdinan. 2021a. Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate. Applied Energy 293:116947. doi: 10.1016/j.apenergy.2021.116947.
  • Moradi-Dastjerdi, R, and K. Behdinan. 2021b. Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments. Aerospace Science and Technology 110:106476. doi: 10.1016/j.ast.2020.106476.
  • Moradi-Dastjerdi, R, and K. Behdinan. 2021c. Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Applied Mathematical Modelling 96:66–79. doi: 10.1016/j.apm.2021.03.013.
  • Moradi-Dastjerdi, R, and K. Behdinan. 2021d. Temperature effect on free vibration response of a smart multifunctional sandwich plate. Journal of Sandwich Structures & Materials 23 (6):2399–421. doi: 10.1177/1099636220908707.
  • Moradi-Dastjerdi, R., A. Radhi, and K. Behdinan. 2020. Damped dynamic behavior of an advanced piezoelectric sandwich plate. Composite Structures 243:112243. doi: 10.1016/j.compstruct.2020.112243.
  • Moradi-Dastjerdi, R., S. Rashahmadi, and S. A. Meguid. 2022. Electro-mechanical performance of smart piezoelectric nanocomposite plates reinforced by zinc oxide and gallium nitride nanowires. Mechanics Based Design of Structures and Machines 50 (6):1954–67. doi: 10.1080/15397734.2020.1766496.
  • Mosallaie Barzoki, A. A., A. Ghorbanpour Arani, R. Kolahchi, and M. R. Mozdianfard. 2012. Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core. Applied Mathematical Modelling 36 (7):2983–95. doi: 10.1016/j.apm.2011.09.093.
  • Muc, A., P. Kędziora, and A. Stawiarski. 2019. Buckling enhancement of laminated composite structures partially covered by piezoelectric actuators. European Journal of Mechanics - A/Solids 73:112–25. doi: 10.1016/j.euromechsol.2018.07.002.
  • Nasihatgozar, M., V. Daghigh, M. Eskandari, K. Nikbin, and A. Simoneau. 2016. Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes. International Journal of Mechanical Sciences 107:69–79. doi: 10.1016/j.ijmecsci.2016.01.010.
  • Nguyen, L. B., N. V. Nguyen, C. H. Thai, A. M. J. Ferreira, and H. Nguyen-xuan. 2019a. An isogeometric Bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Composite Structures 214:227–45. doi: 10.1016/j.compstruct.2019.01.077.
  • Nguyen, N. V., J. Lee, and H. Nguyen-Xuan. 2019b. Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Composites Part B: Engineering 172:769–84. doi: 10.1016/j.compositesb.2019.05.060.
  • Özgür, Ü., Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doǧan, V. Avrutin, S. J. Cho, and H. Morko̧. 2005. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98 (4):041301.
  • Panahandeh-shahraki, D., H. R. Mirdamadi, and O. Vaseghi. 2014. Fully coupled electromechanical buckling analysis of active laminated composite plates considering stored voltage in actuators. Composite Structures 118:94–105. doi: 10.1016/j.compstruct.2014.07.008.
  • Qin, Y., X. Wang, and Z. L. Wang. 2008. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451 (7180):809–14. doi: 10.1038/nature06601.
  • Ramezani, M., M. Rezaiee-Pajand, and F. Tornabene. 2022. Linear and nonlinear mechanical responses of FG-GPLRC plates using a novel strain-based formulation of modified FSDT theory. International Journal of Non-Linear Mechanics 140:103923. doi: 10.1016/j.ijnonlinmec.2022.103923.
  • Ray, M. C, and B. K. Jha. 2022. Exact solutions for bimorph cross-ply and antisymmetric angle-ply plate piezoelectric energy harvesters. Composite Structures 286:115261. doi: 10.1016/j.compstruct.2022.115261.
  • Reddy, J. N. 2004. Mechanics of laminated composite plates and shells: Theory and analysis. Boca Raton, FL: CRC Press.
  • Samaniego, E., C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk. 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362:112790. doi: 10.1016/j.cma.2019.112790.
  • Saravanakumar, B., K. Thiyagarajan, N. R. Alluri, S. SoYoon, K. Taehyun, Z. H. Lin, and S. J. Kim. 2015. Fabrication of an eco-friendly composite nanogenerator for self-powered photosensor applications. Carbon 84:56–65. doi: 10.1016/j.carbon.2014.11.041.
  • Sharma, S., R. Vig, and N. Kumar. 2016. Finite element modeling of smart piezo structure: Considering dependence of piezoelectric coefficients on electric field. Mechanics Based Design of Structures and Machines 44 (4):372–83. doi: 10.1080/15397734.2015.1076728.
  • Shen, H.-S. 2011. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells. Composite Structures 93 (8):2096–108. doi: 10.1016/j.compstruct.2011.02.011.
  • Sobhy, M. 2021. Analytical buckling temperature prediction of FG piezoelectric sandwich plates with lightweight core. Materials Research Express 8 (9):095704. doi: 10.1088/2053-1591/ac28b9.
  • Tan, P, and L. Tong. 2001. Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials. Composites Science and Technology 61 (5):759–69. doi: 10.1016/S0266-3538(01)00014-8.
  • Tanzadeh, H, and H. Amoushahi. 2019. Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories. European Journal of Mechanics - A/Solids 74:242–56. doi: 10.1016/j.euromechsol.2018.11.013.
  • Tornabene, F. 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering 198 (37–40):2911–35. doi: 10.1016/j.cma.2009.04.011.
  • Tornabene, F., M. Viscoti, R. Dimitri, and J. N. Reddy. 2021. Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry. Composite Structures 267:113829. doi: 10.1016/j.compstruct.2021.113829.
  • Tran, L. V., C. H. Thai, and H. Nguyen-xuan. 2013. An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elements in Analysis and Design 73:65–76. doi: 10.1016/j.finel.2013.05.003.
  • Vu-Bac, N., T. X. Duong, T. Lahmer, X. Zhuang, R. A. Sauer, H. S. Park, and T. Rabczuk. 2018. A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Computer Methods in Applied Mechanics and Engineering 331:427–55. doi: 10.1016/j.cma.2017.09.034.
  • Wang, Z. L, and J. Song. 2006. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312 (5771):242–6. doi: 10.1126/science.1124005.
  • Yasmin, A., J. J. Luo, J. L. Abot, and I. M. Daniel. 2006. Mechanical and thermal behavior of clay/epoxy nanocomposites. Composites Science and Technology 66 (14):2415–22. doi: 10.1016/j.compscitech.2006.03.011.
  • Zamani, S. M. M, and K. Behdinan. 2020. A molecular dynamics study of the mechanical and electrical properties of Polydimethylsiloxane-Ni conductive nanocomposites. Composites Science and Technology 200:108463. doi: 10.1016/j.compscitech.2020.108463.
  • Zhang, J., J. Zhang, C. Shu, and Z. Fang. 2017. Enhanced piezoelectric wind energy harvesting based on a buckled beam. Applied Physics Letters 110 (18):183903. doi: 10.1063/1.4982967.
  • Zhu, S., Z. Tong, J. Sun, Q. Li, Z. Zhou, and X. Xu. 2021. Electro-thermo-mechanical post-buckling of piezoelectric functionally graded cylindrical shells. Applied Mathematical Modelling 98:309–22. doi: 10.1016/j.apm.2021.05.011.
  • Zhuang, X., H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk. 2021. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics - A/Solids 87:104225. doi: 10.1016/j.euromechsol.2021.104225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.