160
Views
0
CrossRef citations to date
0
Altmetric
Articles

Stability analysis of a spinning soft-core sandwich beam with CNTs reinforced metal matrix nanocomposite skins subjected to residual stress

&
Pages 338-358 | Received 18 Apr 2022, Accepted 29 Jul 2022, Published online: 11 Aug 2022

References

  • Al-shujairi, M, and Ç. Mollamahmutoğlu. 2018. Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect. Composites Part B: Engineering 154:292–312. doi:10.1016/j.compositesb.2018.08.103.
  • Amirani, M. C., S. M. R. Khalili, and N. Nemati. 2009. Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. Composite Structures 90 (3):373–9. doi:10.1016/j.compstruct.2009.03.023.
  • Asgari, M, and M. A. Kouchakzadeh. 2016. Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow. Composite Structures 143:93–102. doi:10.1016/j.compstruct.2016.02.015.
  • Bamdad, M., M. Mohammadimehr, and K. Alambeigi. 2019. Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution. Journal of Vibration and Control 25 (23-24):2875–93. doi:10.1177/1077546319860314.
  • Banerjee, J. R., C. W. Cheung, R. Morishima, M. Perera, and J. Njuguna. 2007. Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment. International Journal of Solids and Structures 44 (22-23):7543–63. doi:10.1016/j.ijsolstr.2007.04.024.
  • Bilasse, M., E. M. Daya, and L. Azrar. 2010. Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. Journal of Sound and Vibration 329 (23):4950–69. doi:10.1016/j.jsv.2010.06.012.
  • Bornassi, S, and H. M. Navazi. 2018. Torsional vibration analysis of a rotating tapered sandwich beam with magnetorheological elastomer core. Journal of Intelligent Material Systems and Structures 29 (11):2406–23. doi:10.1177/1045389X18770864.
  • Choi, W. J., Y. P. Xiong, and R. A. Shenoi. 2010. Vibration characteristics of sandwich beams with steel skins and magnetorheological elastomer cores. Advances in Structural Engineering 13 (5):837–47. doi:10.1260/1369-4332.13.5.837.
  • de Souza Eloy, F., G. Ferreira Gomes, A. C. Ancelotti, Jr, S. Simões da Cunha, Jr, A. J. F. Bombard, and D. M. Junqueira. 2018. Experimental dynamic analysis of composite sandwich beams with magnetorheological honeycomb core. Engineering Structures 176:231–42. doi:10.1016/j.engstruct.2018.08.101.
  • Fadaee, M. 2019. A new reformulation of vibration suppression equations of functionally graded magnetorheological fluid sandwich beam. Applied Mathematical Modelling 74:469–82. doi:10.1016/j.apm.2019.05.016.
  • Fantuzzi, N., F. Tornabene, and E. Viola. 2014. Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes. International Journal of Mechanical Sciences 79:216–51. doi:10.1016/j.ijmecsci.2013.12.008.
  • Ghorbanpour Arani, A., and T. Soleymani. 2019. Size-dependent vibration analysis of a rotating MR sandwich beam with varying cross section in supersonic airflow. International Journal of Mechanical Sciences 151:288–99. doi:10.1016/j.ijmecsci.2018.11.024.
  • Guo, Z., M. Sheng, and J. Pan. 2017. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores. Journal of Sound and Vibration 400:227–47. doi:10.1016/j.jsv.2017.04.016.
  • Heidari, M, and H. Arvin. 2019. Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes. Journal of Vibration and Control 25 (14):2063–78. doi:10.1177/1077546319847836.
  • Heydarpour, Y., P. Malekzadeh, R. Dimitri, and F. Tornabene. 2020. Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme. Composite Structures 235:111707. doi:10.1016/j.compstruct.2019.111707.
  • Howson, W. P, and A. Zare. 2005. Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams. Journal of Sound and Vibration 282 (3-5):753–67. doi:10.1016/j.jsv.2004.03.045.
  • Kahya, V, and M. Turan. 2018. Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element. Composites Part B: Engineering 146:198–212. doi:10.1016/j.compositesb.2018.04.011.
  • Khalili, S. M. R., N. Nemati, K. Malekzadeh, and A. R. Damanpack. 2010. Free vibration analysis of sandwich beams using improved dynamic stiffness method. Composite Structures 92 (2):387–94. doi:10.1016/j.compstruct.2009.08.020.
  • Khdeir, A. A, and O. J. Aldraihem. 2016. Free vibration of sandwich beams with soft core. Composite Structures 154:179–89. https://www.sciencedirect.com/science/article/pii/S0263822316312624. doi:10.1016/j.compstruct.2016.07.045.
  • Li, Y. H., Y. H. Dong, Y. Qin, and H. W. Lv. 2018. Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam. International Journal of Mechanical Sciences 138-139:131–45. doi:10.1016/j.ijmecsci.2018.01.041.
  • Lin, C.-Y, and L.-W. Chen. 2005. Dynamic stability of spinning pre-twisted sandwich beams with a constrained damping layer subjected to periodic axial loads. Composite Structures 70 (3):275–86. doi:10.1016/j.compstruct.2004.08.033.
  • Mead, D. J, and S. Markus. 1969. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. Journal of Sound and Vibration 10 (2):163–75. doi:10.1016/0022-460X(69)90193-X.
  • Monajemi, A. A, and M. Mohammadimehr. 2020. Effects of residual stress and viscous and hysteretic dampings on the stability of a spinning micro-shaft. Applied Mathematics and Mechanics 41 (8):1251–68. doi:10.1007/s10483-020-2640-8.
  • Navazi, H. M., S. Bornassi, and H. Haddadpour. 2017. Vibration analysis of a rotating magnetorheological tapered sandwich beam. International Journal of Mechanical Sciences 122:308–17. doi:10.1016/j.ijmecsci.2017.01.016.
  • Nayak, B., S. K. Dwivedy, and K. S. R. K. Murthy. 2011. Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions. Journal of Sound and Vibration 330 (9):1837–59. doi:10.1016/j.jsv.2010.10.041.
  • Nayak, B., S. K. Dwivedy, and K. Murthy. 2013. Dynamic stability of magnetorheological elastomer based adaptive sandwich beam with conductive skins using FEM and the harmonic balance method. International Journal of Mechanical Sciences 77:205–16. doi:10.1016/j.ijmecsci.2013.09.010.
  • Nayak, B., S. K. Dwivedy, and K. Murthy. 2014. Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core. European Journal of Mechanics - A/Solids 47:143–55. doi:10.1016/j.euromechsol.2014.03.004.
  • Nejati, M., A. Asanjarani, R. Dimitri, and F. Tornabene. 2017. Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes. International Journal of Mechanical Sciences 130:383–98. doi:10.1016/j.ijmecsci.2017.06.024.
  • Nguyen, N.-D., T.-K. Nguyen, T. P. Vo, T.-N. Nguyen, and S. Lee. 2019. Vibration and buckling behaviours of thin-walled composite and functionally graded sandwich I-beams. Composites Part B: Engineering 166:414–27. doi:10.1016/j.compositesb.2019.02.033.
  • Rao, D. K. 1977. Forced vibration of a damped sandwich beam subjected to moving forces. Journal of Sound and Vibration 54 (2):215–27. doi:10.1016/0022-460X(77)90024-4.
  • Romaszko, M., B. Sapiński, and J. Snamina. 2018. Complex vibration modes in magnetorheological fluid-based sandwich beams. Composite Structures 204:475–86. doi:10.1016/j.compstruct.2018.07.062.
  • Rostami, R., M. Irani Rahaghi, and M. Mohammadimehr. 2021. Vibration control of the rotating sandwich cylindrical shell considering functionally graded core and functionally graded magneto-electro-elastic layers by using differential quadrature method. Journal of Sandwich Structures & Materials 23 (1):132–73. doi:10.1177/1099636218824139.
  • Şimşek, M, and M. Al-Shujairi. 2017. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engineering 108:18–34. doi:10.1016/j.compositesb.2016.09.098.
  • Spelta, C., F. Previdi, S. M. Savaresi, G. Fraternale, and N. Gaudiano. 2009. Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics 19 (3):410–21. doi:10.1016/j.mechatronics.2008.09.006.
  • Subramani, M., A. B. Arumugam, and M. Ramamoorthy. 2017. Vibration analysis of carbon fiber reinforced laminated composite skin with glass honeycomb sandwich beam using HSDT. Periodica Polytechnica Mechanical Engineering 61 (3):213–24. doi:10.3311/PPme.9747.
  • Tornabene, F. 2019. On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials. Thin-Walled Structures 140:85–98. doi:10.1016/j.tws.2019.03.018.
  • Tossapanon, P, and N. Wattanasakulpong. 2016. Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation. Composite Structures 142:215–25. doi:10.1016/j.compstruct.2016.01.085.
  • Wei, M., L. Sun, and G. Hu. 2017. Dynamic properties of an axially moving sandwich beam with magnetorheological fluid core. Advances in Mechanical Engineering 9 (2):168781401769318. doi:10.1177/1687814017693182.
  • Yeh, Z.-F, and Y.-S. Shih. 2006. Dynamic stability of a sandwich beam with magnetorheological Core. Mechanics Based Design of Structures and Machines 34 (2):181–200. doi:10.1080/15397730600773403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.