83
Views
0
CrossRef citations to date
0
Altmetric
Articles

Magneto-electric analysis of higher-order deformable sandwich cylindrical shell

Pages 570-587 | Received 01 Sep 2022, Accepted 05 Feb 2023, Published online: 01 Mar 2023

References

  • Adab, N., and M. Arefi. 2022. Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells. Engineering with Computers. doi:10.1007/s00366-021-01580-8.
  • Adab, N., M. Arefi, and M. Amabili. 2022. A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets. Composite Structures 279:114761. doi:10.1016/j.compstruct.2021.114761.
  • Amabili, M. 2014. A non-linear higher-order thickness stretching and shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. International Journal of Non-Linear Mechanics 58:57–75. doi:10.1016/j.ijnonlinmec.2013.08.006.
  • Arefi, M. 2013. Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder. Acta Mechanica 224 (11):2771–83. doi:10.1007/s00707-013-0888-0.
  • Arefi, M., and A. M. Zenkour. 2017. Transient analysis of a three-layer microbeam subjected to electric potential. International Journal of Smart and Nano Materials 8 (1):20–40. doi:10.1080/19475411.2017.1292967.
  • Arefi, M., E. Mohammad-Rezaei Bidgoli, and O. Civalek. 2022. Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory. Mechanics Based Design of Structures and Machines, 50 (7):2350–78. doi:10.1080/15397734.2020.1777157.
  • Arefi, M., E. M. R. Bidgoli, R. Dimitri, F. Tornabene, and J. N. Reddy. 2019. Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations. Applied Sciences, 9 (8):1580. doi:10.3390/app9081580.
  • Arefi, M., and G. H. Rahimi. 2011. Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure. Smart Structures and Systems 8 (5):433–47. doi:10.12989/sss.2011.8.5.433.
  • Arefi, M., and G. H. Rahimi. 2012a. Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory. Mechanika 18 (1):5–13. doi:10.5755/j01.mech.18.1.1273.
  • Arefi, M., and G. H. Rahimi. 2012b. Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure. Smart Structures and Systems 9 (2):127–43. doi:10.12989/sss.2012.9.2.127.
  • Arefi, M., and G. H. Rahimi. 2012c. Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity. Acta Mechanica 223 (1):63–79. doi:10.1007/s00707-011-0536-5.
  • Arefi, M., and G. H. Rahimi. 2014. Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder. Smart Structures and Systems 13 (1):1–24. doi:10.12989/sss.2014.13.1.001.
  • Arefi, M., G. H. Rahimi, and M. J. Khoshgoftar. 2011. Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material. International Journal of Physical Sciences, 6 (27):6315–22. doi:10.5897/IJPS10.597.
  • Arefi, M., G. H. Rahimi, and M. J. Khoshgoftar. 2012. Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method. Mechanika 18 (3):292–300. doi:10.5755/j01.mech.18.3.1875.
  • Arefi, M., and I. Nahas. 2014. Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell. Composite Structures 118:510–8. doi:10.1016/j.compstruct.2014.08.002.
  • Arefi, N., and M. Adab. 2022. Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates. Waves in Random and Complex Media 1–26. doi:10.1080/17455030.2021.1989084.
  • Arefi, M., M. Kiani, and A. M. Zenkour. 2020. Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak’s foundation via MCST. Journal of Sandwich Structures & Materials 22 (1):55–86. doi:10.1177/1099636217734279.
  • Arefi, M., M. Mohammadi, A. Tabatabaeian, R. Dimitri, and F. Tornabene. 2018. Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels. Steel and Composite Structures 27 (4):525–36. doi:10.12989/scs.2018.27.4.525.
  • Arefi, M., R. Karroubi, and M. Irani-Rahaghi. 2016. Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer. Applied Mathematics and Mechanics 37:821–34. doi:10.1007/s10483-016-2098-9.
  • Behdad, S., and M. Arefi. 2022. A mixed two-phase stress/strain driven elasticity: In applications on static bending, vibration analysis and wave propagation. European Journal of Mechanics-A/Solids 94:10455. doi:10.1016/j.euromechsol.2022.104558.
  • Biju, B., N. Ganesan, and K. Shankar. 2011. Dynamic behavior of magnetostrictive/piezoelectric laminate cylindrical shells due to electromagnetic force. Journal of Mechanics of Materials and Structures, 6 (6):915–24.
  • Bouhadra, A., A. Tounsi, A. A. Bousahla, S. Benyoucef, and S. R. Mahmoud. 2018. Improved HSDT accounting for effect of thickness stretching in advanced composite plates. Structural Engineering and Mechanics 66 (1):61–73. doi:10.12989/sem.2018.66.1.061.
  • Chen, W., W. Fan, Q. Wang, X. Yu, Y. Luo, W. Wang, R. Lei, and Y. Li. 2022. A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing. Nano Energy. 103:107769.doi:10.1016/j.nanoen.2022.107769.
  • Ebrahimi, F., and A. Rastgoo. 2008. Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers. Smart Materials and Structures 17 (1):015044. doi:10.1088/0964-1726/17/1/015044.
  • Fan, W., Y. Zhang, Y. Sun, S. Wang, C. Zhang, X. Yu, W. Wang, and K. Dong. 2023. Durable antibacterial and temperature regulated core-spun yarns for textile health and comfort applications. Chemical Engineering Journal 455:140917.doi:10.1016/j.cej.2022.140917.
  • Fan, W., G. Zhang, X. Zhang, K. Dong, X. Liang, W. Chen, L. Yu, and Y. Zhang. 2022b. Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management. Small 18 (10):2107150.doi:10.1002/smll.202107150.
  • Fan, W., C. Zhang, Y. Liu, S. Wang, K. Dong, Y. Li, F. Wu, J. Liang, C. Wang, and Y. Zhang. 2022a. An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Research. doi:10.1007/s12274-023-5413-8.
  • Fan, T. 2021. Energy harvesting from a nanopiezoelectric/piezomagnetic sandwich beam with porous properties. Journal of Sandwich Structures & Materials 23 (7):3280–302. doi:10.1177/1099636220926863.
  • Fan, X., G. Wei, X. Lin, X. Wang, Z. Si, X. Zhang, and W. Zhao. 2020. Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter 2 (6):1582–93. doi:10.1016/j.matt.2020.04.001.
  • Farajpour, M. R., A. Rastgoo, A. Farajpour, and M. Mohammadi. 2016. Vibration of piezoelectric nanofilm‐based electromechanical sensors via higher‐order non‐local strain gradient theory. Micro & Nano Letters 11 (6):302–7. doi:10.1049/mnl.2016.0081.
  • Faramarzi Babadi, A., and Y. Tadi Beni. 2020. Size-dependent continuum-based model of a flexoelectric functionally graded cylindrical nanoshells. Mathematical Methods in the Applied Sciences. doi:10.1002/mma.6928.
  • Ghabussi, A., N. Ashrafi, A. Shavalipour, A. Hosseinpour, and M. Habibi. 2021. Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mechanics Based Design of Structures and Machines 49 (5):738–62. doi:10.1080/15397734.2019.1705166.
  • Habibi, M., M. Mohammadgholiha, and H. Safarpour. 2019. Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41:221. doi:10.1007/s40430-019-1715-x.
  • He, Y., F. Wang, G. Du, L. Pan, K. Wang, R. Gerhard, and P. Trnka. 2022. Revisiting the thermal ageing on the metallised polypropylene film capacitor: From device to dielectric film. High Voltage. doi:10.1049/hve2.12278.
  • Heidari, Y., M. Arefi, and M. Irani-Rahaghi. 2021. Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches. International Journal of Applied Mechanics 13 (04):2150040. doi:10.1142/S175882512150040X.
  • Heyliger, P., K. C. Pei, and D. Saravanos. 1996. Layerwise mechanics and finite element model for laminated piezoelectric shells. AIAA 34 (11):2353–61. doi:10.2514/3.13401.
  • Kang, J., T. Liu, Y. Lu, L. Lu, K. Dong, S. Wang, B. Li, Y. Yao, Y. Bai, and W. Fan. 2022. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Composites Part B: Engineering 245:110229. doi:10.1016/j.compositesb.2022.110229.
  • Karroubi, R., and M. Irani-Rahaghi. 2019. Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: Free vibration analysis. Applied Mathematics and Mechanics 40:563–78. doi:10.1007/s10483-019-2469-8.
  • Ke, L. L., C. Liu, and Y. S. Wang. 2015. Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions. Physica E: Low-Dimensional Systems and Nanostructures 66:93–106. doi:10.1016/j.physe.2014.10.002.
  • Khdeir, A. A., J. N. Reddy, and D. Frederick. 1989. A study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories. International Journal of Engineering Sciences 27 (11):1337–51. doi:10.1016/0020-7225(89)90058-X.
  • Kheroubi, B., A. Benzair, A. Tounsi, and A. Semmah. 2016. A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams. Advances in Nano Research 4 (4):251. doi:10.12989/anr.2016.4.4.251.
  • Kholdi, M., G. Rahimi, A. Loghman, H. Ashrafi, and M. Arefi. 2022. Analysis of thick-walled spherical shells subjected to various temperature gradients: Thermo-elasto-plastic and residual stress studies. International Journal of Applied Mechanics 13 (9):2150105. doi:10.1142/S1758825121501052.
  • Khoshgoftar, M. J., G. H. Rahimi, and M. Arefi. 2013. Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure. Mechanics Research Communication 51:61–6. doi:10.1016/j.mechrescom.2013.05.001.
  • Li, C., and Q. Han. 2021. Guided waves propagation in sandwich cylindrical structures with functionally graded graphene-epoxy core and piezoelectric surface layers. Journal of Sandwich Structures & Materials 23 (8):3878–901. doi:10.1177/1099636220959034.
  • Li, S., M. Zhao, J. Xue, and R. Zhao. 2023. Effects of edge type and reconstruction on the electronic properties and magnetism of 1T′-ReS2 nanoribbons: A study based on DFT calculations. Journal of Magnetism and Magnetic Materials 567:170351. doi:10.1016/j.jmmm.2022.170351.
  • Liu, C., L. L. Ke, J. Yang, S. Kitipornchai, and Y. S. Wang. 2018. Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory. Mechanics of Advanced Materials and Structures 25 (1516):1252–64. doi:10.1080/15376494.2016.1149648.
  • Liu, C., L. L. Ke, Y. S. Wang, J. Yang, and S. Kitipornchai. 2013. Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Composite Structures 106:167–74. doi:10.1016/j.compstruct.2013.05.031.
  • Liu, J., L. Xu, L. Bai, and M. A. Khadimallah. 2021. Electro-magnetic vibration behavior of smart curved micro-/nanoshells. Waves in Random and Complex Media. doi:10.1080/17455030.2021.2014600.
  • Liu, J., W. Ye, Q. Zang, and G. Lin. 2020. Deformation of laminated and sandwich cylindrical shell with covered or embedded piezoelectric layers under compression and electrical loading. Composite Structures 240:112041. doi:10.1016/j.compstruct.2020.112041.
  • Liu, Y., Z. Qin, and F. Chu. 2022. Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells. Communications in Nonlinear Science and Numerical Simulation 107:106146. doi:10.1016/j.cnsns.2021.106146.
  • Lori Dehsaraji, M., M. Arefi, and A. Loghman. 2021. Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect. Defence Technology 17 (1):119–34. doi:10.1016/j.dt.2020.01.001.
  • Luo, Y., Y. Miao, H. Wang, K. Dong, L. Hou, Y. Xu, W. Chen, Y. Zhang, Y. Zhang, and W. Fan. 2023. Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Research. doi:10.1007/s12274-023-5382-y.
  • Malikan, M., M. Krasheninnikov, and V. A. Eremeyev. 2020. Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. International Journal of Engineering Science 148:103210. doi:10.1016/j.ijengsci.2019.103210.
  • Mohammad-Rezaei Bidgoli, E., and M. Arefi. 2021. Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation. Journal of Sandwich Structures and Materials 23 (2):436–72. doi:10.1177/1099636219839302.
  • Muhammad, I., A. Ali, L. Zhou, W. Zhang, and P. K. J. Wong. 2022. Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer. Journal of Alloys and Compounds 909:164797. doi:10.1016/j.jallcom.2022.164797.
  • Ni, Y., S. Zhu, J. Sun, Z. Tong, Z. Zhou, and X. Xu. 2020. Analytical buckling solution of magneto-electro-thermo-elastic cylindrical shells under multi-physics fields. Composite Structures 239:112021. doi:10.1016/j.compstruct.2020.112021.
  • Nwojia, C. U., and D. G. Ani. 2022. Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells. Latin American Journal of Solids and Structures 19 (3). doi:10.1590/1679-78256843.
  • Pan, E., and P. R. Heyliger. 2003. Exact solutions for magneto-electro-elastic laminates in cylindrical bending. International Journal of Solids and Structures 40 (24):6859–76. doi:10.1016/j.ijsolstr.2003.08.003.
  • Pan, X., W. Wu, X. Yu, L. Lu, C. Guo, and Y. Zhao. 2023. Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250 °C. Superconductor Science and Technology. doi:10.1088/1361-6668/acb740.
  • Peng, Y., C. Shi, Y. Zhu, M. Gu, and S. Zhuang. 2020. Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement. PhotoniX 1:12. doi:10.1186/s43074-020-00011-z.
  • Sahmani, S., and M. M. Aghdam. 2018. Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells. Composites Part B: Engineering 132:258–74. doi:10.1016/j.compositesb.2017.09.004.
  • Soedel, W. 2004. Vibrations of shells and plates. New York: Marcel Dekker, Inc.
  • Sun, Y., W. Fan, C. Song, X. Gao, T. Liu, W. Song, S. Wang, R. Zhou, G. Li, and S. Li. 2022. Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature. Advanced Composites and Hybrid Materials 5 (3):1951–65. doi:10.1007/s42114-022-00526-y.
  • Tu, T. M., D.-K. Thai, P. V. Hoan, and L. K. Hoa. 2022. Nonlinear behavior of FG porous cylindrical sandwich shells reinforced by spiral stiffeners under torsional load including thermal effect. Mechanics of Advanced Materials and Structures 29 (27):5860–75. doi:10.1080/15376494.2021.1967530.
  • Wang, M., C. Jiang, S. Zhang, X. Song, Y. Tang, and H. Cheng. 2018. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nature Chemistry 10 (6):667–72. doi:10.1038/s41557-018-0045-4.
  • Wilkinson, J. P. D. 1970. Thermal analogy for the dynamics of piezoelectric shells. The Journal of the Acoustical Society of America 47:945. doi:10.1121/1.1911986.
  • Xue, Y., and J. Liu. 2010. Decay rate of saint-venant end effects for plane deformations of piezoelectric-piezomagnetic sandwich structures. Acta Mechanica Solida Sinica 23 (5):407–19. doi:10.1016/S0894-9166(10)60043-2.
  • Ye, W., J. Liu, Q. Zang, and G. Lin. 2020. Magneto-electro-elastic semi-analytical models for free vibration and transient dynamic responses of composite cylindrical shell structures. Mechanics of Materials 148:103495. doi:10.1016/j.mechmat.2020.103495.
  • Zenkour, A. M., and M. E. Fares. 2001. Bending, buckling and free vibration of non-homogeneous composite laminated cylindrical shells using a refined first-order theory. Composites Part B: Engineering 32 (3):237–47. doi:10.1016/S1359-8368(00)00060-3.
  • Zhang, X., Y. Tang, F. Zhang, and C. Lee. 2016. A novel aluminum-graphite dual-ion battery. Advanced Energy Materials 6 (11):1502588. doi:10.1002/aenm.201502588.
  • Zhang, Y., G. Liu, J. Ye, and Y. Lin. 2022. Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Composite Structures 299:116087. doi:10.1016/j.compstruct.2022.116087.
  • Zhao, R., H. Dai, and H. Yao. 2022. Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness. IEEE Robotics and Automation Letters 7 (2):4535–41. doi:10.1109/LRA.2022.3151164.
  • Zhu, S., J. Sun, Z. Tong, Q. Li, Z. Zhou, and X. Xu. 2021. Post-buckling analysis of magneto-electro-elastic composite cylindrical shells subjected to multi-field coupled loadings. Composite Structures 270:114061. doi:10.1016/j.compstruct.2021.114061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.