132
Views
0
CrossRef citations to date
0
Altmetric
Articles

Bending-bending coupled static analysis of functionally graded and porous pretwisted cantilever beams using initial values method

ORCID Icon & ORCID Icon
Pages 2480-2503 | Received 13 Oct 2022, Accepted 23 Feb 2023, Published online: 08 Mar 2023

References

  • Álvarez Tejedor, T. 2011. Gas turbine materials selection, life management and performance improvement. In Power plant life management and performance improvement, ed. John E. Oakey, 330–419. Cambridge: Woodhead Publishing.
  • Amoozgar, M., and L. Gelman. 2022. Vibration analysis of rotating porous functionally graded material beams using exact formulation. JVC/Journal of Vibration and Control 28:3195–206. doi:10.1177/10775463211027883.
  • Bahaadini, R., and A. R. Saidi. 2018. On the stability of spinning thin-walled porous beams. Thin-Walled Structures 132:604–15. doi:10.1016/j.tws.2018.09.022.
  • Birman, V., and L. W. Byrd. 2007. Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews 60:195–216. doi:10.1115/1.2777164.
  • Carnegie, W. 1957. Static bending of pre-twisted cantilever blading. Proceedings of the Institution of Mechanical Engineers 171:873–94. doi:10.1243/PIME_PROC_1957_171_071_02.
  • Carnegie, W. 1962. Vibrations of pre-twisted cantilever blading: An additional effect due to torsion. Proceedings of the Institution of Mechanical Engineers 176:315–22. doi:10.1243/PIME_PROC_1962_176_030_02.
  • Carnegie, W. 1964. Vibrations of pre-twisted cantilever blading allowing for rotary inertia and shear deflection. Journal of Mechanical Engineering Science 6:105–9. doi:10.1243/JMES_JOUR_1964_006_019_02.
  • Chen, D., S. Kitipornchai, and J. Yang. 2018. Dynamic response and energy absorption of functionally graded porous structures. Materials and Design 140:473–87. doi:10.1016/j.matdes.2017.12.019.
  • Chen, D., S. Rezaei, P. L. Rosendahl, B. X. Xu, and J. Schneider. 2022a. Multiscale modelling of functionally graded porous beams: Buckling and vibration analyses. Engineering Structures 266:114568. doi:10.1016/j.engstruct.2022.114568.
  • Chen, D., J. Yang, and S. Kitipornchai. 2015. Elastic buckling and static bending of shear deformable functionally graded porous beam. Composite Structures 133:54–61. doi:10.1016/j.compstruct.2015.07.052.
  • Chen, D., J. Yang, J. Schneider, S. Kitipornchai, and L. Zhang. 2022b. Impact response of inclined self-weighted functionally graded porous beams reinforced by graphene platelets. Thin-Walled Structures 179:109501. doi:10.1016/j.tws.2022.109501.
  • Chen, W.-R. 2007. Parametric studies on buckling loads and critical speeds of microdrill bits. International Journal of Mechanical Sciences 49:935–49. doi:10.1016/j.ijmecsci.2007.01.005.
  • Chen, W.-R. 2012. Parametric studies on bending of twisted timoshenko beams under complex loadings. Journal of Mechanics 28:N1–N6. doi:10.1017/jmech.2012.23.
  • Dong, Y., H. Hu, and L. Wang. 2022. A comprehensive study on the coupled multi-mode vibrations of cylindrical shells. Mechanical Systems and Signal Processing 169:108730. doi:10.1016/j.ymssp.2021.108730.
  • Dong, Y., X. Li, K. Gao, Y. Li, and J. Yang. 2020. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: Effects of spinning motion and thermal environment. Nonlinear Dynamics 99:981–1000. doi:10.1007/s11071-019-05297-8.
  • Ebrahimi, F., and M. R. Barati. 2017. Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field. Journal of Thermal Stresses 40:548–63. doi:10.1080/01495739.2016.1254076.
  • Eroglu, U. 2015. In-plane free vibrations of circular beams made of functionally graded material in thermal environment: Beam theory approach. Composite Structures 122:217–28. doi:10.1016/j.compstruct.2014.11.051.
  • Fazelzadeh, S. A., P. Malekzadeh, P. Zahedinejad, and M. Hosseini. 2007. Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method. Journal of Sound and Vibration 306:333–48. doi:10.1016/j.jsv.2007.05.011.
  • García-Moreno, F. 2016. Commercial applications of metal foams: Their properties and production. Materials 9:20–4. doi:10.3390/ma9020085.
  • Guo, H., K. Huang, and Z. Lei. 2022. Dynamic analysis of rotating laminated composite cantilever plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Mechanics Based Design of Structures and Machines 50:3352–69. doi:10.1080/15397734.2020.1803083.
  • Guo, X., X. D. Yang, and S. W. Wang. 2019. Dynamic characteristics of a rotating tapered cantilevered Timoshenko beam with preset and pre-twist angles. International Journal of Structural Stability and Dynamics 19:5–8. doi:10.1142/S0219455419500433.
  • Hu, Y., Y. Zhao, N. Wang, and X. Chen. 2020. Dynamic analysis of varying speed rotating pretwisted structures using refined beam theories. International Journal of Solids and Structures 185–186:292–310. doi:10.1016/j.ijsolstr.2019.08.008.
  • Jankowski, P., K. K. Żur, J. Kim, C. W. Lim, and J. N. Reddy. 2021. On the piezoelectric effect on stability of symmetric FGM porous nanobeams. Composite Structures 267:113880. doi:10.1016/j.compstruct.2021.113880.
  • Koizumi, M., and M. Niino. 1995. Overview of FGM research in Japan. MRS Bulletin 20:19–21. doi:10.1557/S0883769400048867.
  • Lee, J. W., and J. Y. Lee. 2016. Development of a transfer matrix method to obtain exact solutions for the dynamic characteristics of a twisted uniform beam. International Journal of Mechanical Sciences 105:215–26. doi:10.1016/j.ijmecsci.2015.11.015.
  • Librescu, L., S. Y. Oh, and O. Song. 2004. Spinning thin-walled beams made of functionally graded materials: Modeling, vibration and instability. European Journal of Mechanics, A/Solids 23:499–515. doi:10.1016/j.euromechsol.2003.12.003.
  • Librescu, L., and O. Song. 2006. Thin-walled composite beams: Theory and application. Dordrecht: Springer Netherlands.
  • Lin, S. M., W. R. Wang, and S. Y. Lee. 2001. The dynamic analysis of nonuniformly pretwisted Timoshenko beams with elastic boundary conditions. International Journal of Mechanical Sciences 43:2385–405. doi:10.1016/S0020-7403(01)00018-2.
  • Magrab, E. B., and D. E. Gilsinn. 1984. Buckling loads and natural frequencies of drill bits and fluted cutters. Journal of Manufacturing Science and Engineering, Transactions of the ASME 106:196–204. doi:10.1115/1.3185933.
  • Migliaccio, G., and G. Ruta. 2021. The influence of an initial twisting on tapered beams undergoing large displacements. Meccanica 56:1831–45. doi:10.1007/s11012-021-01334-2.
  • Nguyen, L. B., C. H. Thai, N. Duong-Nguyen, and H. Nguyen-Xuan. 2022. A size-dependent isogeometric approach for vibration analysis of FG piezoelectric porous microplates using modified strain gradient theory. Engineering with Computers 38:4415–35. doi:10.1007/s00366-021-01468-7.
  • Nguyen, T. N., T. D. Ngo, and H. Nguyen-Xuan. 2017. A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation. Computer Methods in Applied Mechanics and Engineering 326:376–401. doi:10.1016/j.cma.2017.07.024.
  • Oh, Y., and H. H. Yoo. 2016. Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials. International Journal of Mechanical Sciences119:68–79. doi:10.1016/j.ijmecsci.2016.10.002.
  • Pease, M. 1965. The Matricant. In Mathematics in science and engineering, ed. M. Pease, 172–92. New York: Academic Press.
  • Ramesh, M. N. V., and N. Mohan Rao. 2013. Free vibration analysis of pre-twisted rotating FGM beams. International Journal of Mechanics and Materials in Design 9:367–83. doi:10.1007/s10999-013-9226-x.
  • Rousseau, C. E., and H. V. Tippur. 2000. Compositionally graded materials with cracks normal to the elastic gradient. Acta Materialia 48:4021–33. doi:10.1016/S1359-6454(00)00202-0.
  • Sabuncu, M., and K. Evran. 2006. The dynamic stability of a rotating pre-twisted asymmetric cross-section blade subjected to lateral parametric excitation. Finite Elements in Analysis and Design 42:1113–22. doi:10.1016/j.finel.2006.04.004.
  • Şakar, G., and M. Sabuncu. 2008. Dynamic stability analysis of pretwisted aerofoil cross-section blade packets under rotating conditions. International Journal of Mechanical Sciences 50:1–13. doi:10.1016/j.ijmecsci.2007.06.001.
  • Saleh, B., J. Jiang, R. Fathi, T. Al-Hababi, Q. Xu, L. Wang, D. Song, and A. Ma. 2020. 30 years of functionally graded materials: An overview of manufacturing methods, applications and future challenges. Composites Part B: Engineering 201:108376. doi:10.1016/j.compositesb.2020.108376.
  • Šalinić, S., A. Obradović, and A. Tomović. 2018. Free vibration analysis of axially functionally graded tapered, stepped, and continuously segmented rods and beams. Composites Part B: Engineering 150:135–43. doi:10.1016/j.compositesb.2018.05.060.
  • Tang, Y., X. Lv, and T. Yang. 2019. Bi-directional functionally graded beams: Asymmetric modes and nonlinear free vibration. Composites Part B: Engineering 156:319–31. doi:10.1016/j.compositesb.2018.08.140.
  • Tilbrook, M. T., R. J. Moon, and M. Hoffman. 2005. Finite element simulations of crack propagation in functionally graded materials under flexural loading. Engineering Fracture Mechanics 72:2444–67. doi:10.1016/j.engfracmech.2005.04.001.
  • Tufekci, E., S. A. Aya, and O. Oldac. 2016a. A unified formulation for static behavior of nonlocal curved beams. Structural Engineering and Mechanics 59:475–502. doi:10.12989/sem.2016.59.3.475.
  • Tufekci, E., U. Eroglu, and S. A. Aya. 2016b. Exact solution for in-plane static problems of circular beams made of functionally graded materials. Mechanics Based Design of Structures and Machines 44:476–94. doi:10.1080/15397734.2015.1121398.
  • Vielsack, P. 2000. Lateral bending vibrations of a beam with small pretwist. Engineering Structures 22:691–8. doi:10.1016/S0141-0296(99)00010-3.
  • Wattanasakulpong, N., and A. Chaikittiratana. 2015. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50:1331–42. doi:10.1007/s11012-014-0094-8.
  • Wattanasakulpong, N., B. Gangadhara Prusty, D. W. Kelly, and M. Hoffman. 2012. Free vibration analysis of layered functionally graded beams with experimental validation. Materials and Design 36:182–90. doi:10.1016/j.matdes.2011.10.049.
  • Xing, Y. F., and B. Liu. 2009. Exact solutions for the free in-plane vibrations of rectangular plates. International Journal of Mechanical Sciences 51:246–55. doi:10.1016/j.ijmecsci.2008.12.009.
  • Yildirim, V. 1999. Governing equations of initially twisted elastic space rods made of laminated composite materials. International Journal of Engineering Science 37:1007–35.
  • Zhao, T. Y., L. P. Jiang, H. G. Pan, J. Yang, and S. Kitipornchai. 2021. Coupled free vibration of a functionally graded pre-twisted blade-shaft system reinforced with graphene nanoplatelets. Composite Structures 262:113362. doi:10.1016/j.compstruct.2020.113362.
  • Zhao, Z. L., H. P. Zhao, Z. Chang, and X. Q. Feng. 2014. Analysis of bending and buckling of pre-twisted beams: A bioinspired study. Acta Mechanica Sinica/Lixue Xuebao 30:507–15. doi:10.1007/s10409-014-0067-0.
  • Zhao, Z. L., S. Zhou, X. Q. Feng, and Y. M. Xie. 2020. Static and dynamic properties of pre-twisted leaves and stalks with varying chiral morphologies. Extreme Mechanics Letters 34:100612. doi:10.1016/j.eml.2019.100612.
  • Zhu, J., Z. Lai, Z. Yin, J. Jeon, and S. Lee. 2001. Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy. Materials Chemistry and Physics 68:130–5. doi:10.1016/S0254-0584(00)00355-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.