482
Views
7
CrossRef citations to date
0
Altmetric
Articles

The effects of coolant on the cutting temperature, surface roughness and tool wear in turning operations of Ti6Al4V alloy

ORCID Icon & ORCID Icon
Pages 3277-3299 | Received 08 Jun 2022, Accepted 03 Apr 2023, Published online: 21 Apr 2023

References

  • Agmell, M., V. Bushlya, R. M’Saoubi, O. Gutnichenko, O. Zaporozhets, S. V. Laakso, and J.-E. Ståhl. 2020. Investigation of mechanical and thermal loads in pcBN tooling during machining of Inconel 718. The International Journal of Advanced Manufacturing Technology 107 (3–4):1451–62. doi:10.1007/s00170-020-05081-8.
  • Agrawal, C., J. Wadhwa, A. Pitroda, C. I. Pruncu, M. Sarikaya, and N. Khanna. 2021. Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining. Tribology International 153:106597. doi:10.1016/j.triboint.2020.106597.
  • Airao, J., C. K. Nirala, R. Bertolini, G. M. Krolczyk, and N. Khanna. 2022. Sustainable cooling strategies to reduce tool wear, power consumption and surface roughness during ultrasonic assisted turning of Ti-6Al-4V. Tribology International 169:107494. doi:10.1016/j.triboint.2022.107494.
  • Ansari, M. A., A. Samanta, R. A. Behnagh, and H. Ding. 2019. An efficient coupled Eulerian-Lagrangian finite element model for friction stir processing. The International Journal of Advanced Manufacturing Technology 101 (5–8):1495–508. doi:10.1007/s00170-018-3000-z.
  • Araújo, R. P., T. L. Rolim, C. A. Oliveira, A. E. Moura, and J. C. A. Silva. 2019. Analysis of the surface roughness and cutting tool wear using a vapor compression assisted cooling system to cool the cutting fluid in turning operation. Journal of Manufacturing Processes 44:38–46. doi:10.1016/j.jmapro.2019.05.040.
  • Atabey, F., I. Lazoglu, and Y. Altintas. 2003. Mechanics of boring processes—part I. International Journal of Machine Tools and Manufacture 43 (5):463–76. doi:10.1016/S0890-6955(02)00276-6.
  • Chaabani, S., P. J. Arrazola, Y. Ayed, A. Madariaga, A. Tidu, and G. Germain. 2020. Comparison between cryogenic coolants effect on tool wear and surface integrity in finishing turning of Inconel 718. Journal of Materials Processing Technology 285:116780. doi:10.1016/j.jmatprotec.2020.116780.
  • Comak, A., and Y. Altintas. 2017. Mechanics of turn-milling operations. International Journal of Machine Tools and Manufacture 121:2–9. doi:10.1016/j.ijmachtools.2017.03.007.
  • Ducobu, F., P.-J. Arrazola, E. Rivière-Lorphèvre, G. O. d Zarate, A. Madariaga, and E. Filippi. 2017. The CEL method as an alternative to the current modelling approaches for Ti6Al4V orthogonal cutting simulation. Procedia CIRP 58:245–50. doi:10.1016/j.procir.2017.03.188.
  • Ducobu, F., E. Rivière-Lorphèvre, and E. Filippi. 2016. Application of the Coupled Eulerian-Lagrangian (CEL) method to the modeling of orthogonal cutting. European Journal of Mechanics - A/Solids 59:58–66. doi:10.1016/j.euromechsol.2016.03.008.
  • Ezugwu, E. O., J. Bonney, R. B. Da Silva, and O. Çakir. 2007. Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture 47 (6):884–91. doi:10.1016/j.ijmachtools.2006.08.005.
  • Feather, W. G., H. Lim, and M. Knezevic. 2021. A numerical study into element type and mesh resolution for crystal plasticity finite element modeling of explicit grain structures. Computational Mechanics 67 (1):33–55. doi:10.1007/s00466-020-01918-x.
  • Gao, Y., J. Hoon Ko, and H. P. Lee. 2018a. 3D coupled Eulerian-Lagrangian finite element analysis of end milling. The International Journal of Advanced Manufacturing Technology 98 (1–4):849–57. doi:10.1007/s00170-018-2284-3.
  • Gao, Y., J. Hoon Ko, and H. P. Lee. 2018b. 3D Eulerian finite element modelling of end milling. Procedia CIRP 77:159–62. doi:10.1016/j.procir.2018.08.265.
  • Gupta, M. K., M. Mia, G. Singh, D. Y. Pimenov, M. Sarikaya, and V. S. Sharma. 2019. Hybrid cooling-lubrication strategies to improve surface topography and tool wear in sustainable turning of Al 7075-T6 alloy. The International Journal of Advanced Manufacturing Technology 101 (1–4):55–69. doi:10.1007/s00170-018-2870-4.
  • Gupta, M. K., Q. Song, Z. Liu, M. Sarikaya, M. Jamil, M. Mia, N. Khanna, and G. M. Krolczyk. 2021. Experimental characterisation of the performance of hybrid cryo-lubrication assisted turning of Ti–6Al–4V alloy. Tribology International 153:106582. doi:10.1016/j.triboint.2020.106582.
  • Hatefi, S., and K. Abou-El-Hossein. 2020. Review of single-point diamond turning process in terms of ultra-precision optical surface roughness. The International Journal of Advanced Manufacturing Technology 106 (5-6):2167–87. doi:10.1007/s00170-019-04700-3.
  • He, A., G. Xie, H. Zhang, and X. Wang. 2013. A comparative study on Johnson–Cook, modified Johnson–Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Materials & Design (1980-2015) 52:677–85. doi:10.1016/j.matdes.2013.06.010.
  • Ji, C., Y. Li, X. Qin, Q. Zhao, D. Sun, and Y. Jin. 2015. 3D FEM simulation of helical milling hole process for titanium alloy Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology 81 (9–12):1733–42. doi:10.1007/s00170-015-7323-8.
  • Khanna, N., C. Agrawal, M. Dogra, and C. I. Pruncu. 2020. Evaluation of tool wear, energy consumption, and surface roughness during turning of inconel 718 using sustainable machining technique. Journal of Materials Research and Technology 9 (3):5794–804. doi:10.1016/j.jmrt.2020.03.104.
  • Khochtali, H., I. BenBelgacem, F. Zemzemi, and W. Bensalem. 2021. Comparison of coupled Eulerian–Lagrangian and coupled smoothed particle hydrodynamics–lagrangian in fluid–structure interaction applied to metal cutting. Arabian Journal for Science and Engineering 46 (12):11923–36. doi:10.1007/s13369-021-05737-x.
  • Khoei, A. R., and S. M. Taheri Mousavi. 2010. Modeling of large deformation–Large sliding contact via the penalty X-FEM technique. Computational Materials Science 48 (3):471–80. doi:10.1016/j.commatsci.2010.02.008.
  • Khoshdarregi, M. R., and Y. Altintas. 2015. Generalized modeling of chip geometry and cutting forces in multi-point thread turning. International Journal of Machine Tools and Manufacture 98:21–32. doi:10.1016/j.ijmachtools.2015.08.005.
  • Lazoglu, I., and Y. Altintas. 2002. Prediction of tool and chip temperature in continuous and interrupted machining. International Journal of Machine Tools and Manufacture 42 (9):1011–22. doi:10.1016/S0890-6955(02)00039-1.
  • Li, Z.-L., O. Tuysuz, L.-M. Zhu, and Y. Altintas. 2018. Surface form error prediction in five-axis flank milling of thin-walled parts. International Journal of Machine Tools and Manufacture 128:21–32. doi:10.1016/j.ijmachtools.2018.01.005.
  • Lin, Y. C., and X.-M. Chen. 2010. A combined Johnson–Cook and Zerilli–Armstrong model for hot compressed typical high-strength alloy steel. Computational Materials Science 49 (3):628–33. doi:10.1016/j.commatsci.2010.06.004.
  • Liu, Q., and Y. Altintas. 1999. On-line monitoring of flank wear in turning with multilayered feed-forward neural network. International Journal of Machine Tools and Manufacture 39 (12):1945–59. doi:10.1016/S0890-6955(99)00020-6.
  • Liu, Y.-P., Z. Murat Kilic, and Y. Altintas. 2022. Monitoring of in-process force coefficients and tool wear. CIRP Journal of Manufacturing Science and Technology 38:105–19. doi:10.1016/j.cirpj.2022.04.009.
  • Liu, D., Y. Zhang, M. Luo, and D. Zhang. 2019. Investigation of tool wear and chip morphology in dry trochoidal milling of titanium alloy Ti–6Al–4V. Materials 12 (12):1937. doi:10.3390/ma12121937.
  • Ma, J., D. Luo, X. Liao, Z. Zhang, Y. Huang, and J. Lu. 2021. Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning. Measurement 173:108554. doi:10.1016/j.measurement.2020.108554.
  • Magalhães, L. C., G. C. Carlesso, L. N. López de Lacalle, M. T. Souza, F. de Oliveira Palheta, and C. Binder. 2022. Tool wear effect on surface integrity in AISI 1045 steel dry turning. Materials 15 (6):2031. doi:10.3390/ma15062031.
  • Patel, H., and H. Patil. 2022. Tribological performance based machinability investigations of Al2O3-ZrO2 ceramic cutting tool in dry machining of Ti-6Al-4V alloy. Tribology International 176:107776. doi:10.1016/j.triboint.2022.107776.
  • Ramesh, S., L. Karunamoorthy, and K. Palanikumar. 2012. Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5). Measurement 45 (5):1266–76. doi:10.1016/j.measurement.2012.01.010.
  • Ren, J., J. Cai, J. Zhou, K. Shi, and X. Li. 2018. Inverse determination of improved constitutive equation for cutting titanium alloy Ti-6Al-4V based on finite element analysis. The International Journal of Advanced Manufacturing Technology 97 (9-12):3671–82. doi:10.1007/s00170-018-2178-4.
  • Shalaby, M. A., and S. C. Veldhuis. 2019. Wear and tribological performance of different ceramic tools in dry high speed machining of Ni-Co-Cr precipitation hardenable aerospace superalloy. Tribology Transactions 62 (1):62–77. doi:10.1080/10402004.2018.1486494.
  • Singh, R., J. S. Dureja, M. Dogra, M. K. Gupta, M. Mia, and Q. Song. 2020. Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy. Tribology International 145:106183. doi:10.1016/j.triboint.2020.106183.
  • Sivalingam, V., J. Sun, B. Yang, K. Liu, and R. Raju. 2018. Machining performance and tool wear analysis on cryogenic treated insert during end milling of Ti-6Al-4V alloy. Journal of Manufacturing Processes 36:188–96. doi:10.1016/j.jmapro.2018.10.010.
  • Soori, M., B. Arezoo, and M. Habibi. 2013. Dimensional and geometrical errors of three-axis CNC milling machines in a virtual machining system. Computer-Aided Design 45 (11):1306–13. doi:10.1016/j.cad.2013.06.002.
  • Soori, M., B. Arezoo, and M. Habibi. 2014. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines. Journal of Manufacturing Systems 33 (4):498–507. doi:10.1016/j.jmsy.2014.04.007.
  • Soori, M., B. Arezoo, and M. Habibi. 2016. Tool deflection error of three-axis computer numerical control milling machines, monitoring and minimizing by a virtual machining system. Journal of Manufacturing Science and Engineering 138 (8):081005. doi:10.1115/1.4032393.
  • Soori, M., B. Arezoo, and M. Habibi. 2017. Accuracy analysis of tool deflection error modelling in prediction of milled surfaces by a virtual machining system. International Journal of Computer Applications in Technology 55 (4):308–21. doi:10.1504/IJCAT.2017.086015.
  • Takeyama, H., and R. Murata. 1963. Basic investigation of tool wear. Journal of Engineering for Industry 85 (1):33–7. doi:10.1115/1.3667575.
  • Usca, Ü. A., M. Uzun, M. Kuntoğlu, E. Sap, and M. K. Gupta. 2021. Investigations on tool wear, surface roughness, cutting temperature, and chip formation in machining of Cu-B-CrC composites. The International Journal of Advanced Manufacturing Technology 116 (9–10):3011–25. doi:10.1007/s00170-021-07670-7.
  • Uzun, M., Ü. A. Usca, M. Kuntoğlu, and M. K. Gupta. 2022. Influence of tool path strategies on machining time, tool wear, and surface roughness during milling of AISI X210Cr12 steel. The International Journal of Advanced Manufacturing Technology 119 (3–4):2709–20. doi:10.1007/s00170-021-08365-9.
  • Wang, Y., B. Zou, J. Wang, Y. Wu, and C. Huang. 2020. Effect of the progressive tool wear on surface topography and chip formation in micro-milling of Ti–6Al–4V using Ti (C7N3)-based cermet micro-mill. Tribology International 141:105900. doi:10.1016/j.triboint.2019.105900.
  • Xu, X., J. Outeiro, J. Zhang, B. Xu, W. Zhao, and V. Astakhov. 2021. Machining simulation of Ti6Al4V using coupled Eulerian-Lagrangian approach and a constitutive model considering the state of stress. Simulation Modelling Practice and Theory 110:102312. doi:10.1016/j.simpat.2021.102312.
  • Yang, Z., X. Deng, and Z. Li. 2019. Numerical modeling of dynamic frictional rolling contact with an explicit finite element method. Tribology International 129:214–31. doi:10.1016/j.triboint.2018.08.028.
  • Yıldırım, Ç. V., T. Kıvak, M. Sarıkaya, and Ş. Şirin. 2020. Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. Journal of Materials Research and Technology 9 (2):2079–92. doi:10.1016/j.jmrt.2019.12.069.
  • Zhao, J., and Z. Liu. 2020. Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage. Journal of Manufacturing Processes 56:1155–65. doi:10.1016/j.jmapro.2020.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.