82
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A macro-mesoscopic method for forced vibration behavior of SiCf/Ti composite cantilever beam

ORCID Icon, , , , &
Pages 3611-3631 | Received 29 May 2022, Accepted 05 Apr 2023, Published online: 26 Apr 2023

References

  • Bai, R., H. Chen, and M. Wang. 2006. The effect of matrix damage on dynamic characteristics of composite stiffened delaminated plates. Engineering Mechanics 23 (3):93–8.
  • Chen, J. 2017. Constitutive model and vibration analysis of ceramic matrix composites [Internet] MA Eng. thesis. Nanjing University of Aeronautics and Astronautics. Accessed 2022, Jul 26. https://oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201801&filename=1017874948.nh&uniplatform=OVERSEA&v=HeOnHihf88W33l6CLv2ZaoY4X9HIo3x32bsnYBOMoECxEiMaPU6d8hDjpU0JZPTD.
  • Cheng, J. W., H. Huang, and X. B. Liu. 2015. Application progress of SiC fiber reinforced titanium matrix composites in aero Engine. Hi-Tech Fiber and Application 40:29–32 + 60.
  • Feng, G. H. 2016. Interfacial characteristics and fatigue behavior of SiC fiber-reinforced Ti matrix composites. PhD diss., Northwestern Polytechnical University.
  • Gao, Y., and J.-L. Li. 2009. Research progress on vibration characteristics of laminated composites. Journal of Tianjin Polytechnic University 28:19–24.
  • Ge, L., H. Shen, and Z. Lin. 2002. Forced vibration of symmetric cross-ply laminates on elastic foundations. Journal of Shanghai Jiaotong University 36 (11):1634–9 + 1648.
  • Gundel, D. B. Warrier Sg, and Miracle, D. 1997. The interface debond stress in single and multiple SiC fiber/Ti-6Al-4V composites under transverse tension. undefined [Internet]. Accessed Jun 29, 2022. https://www.semanticscholar.org/paper/Study-of-interfacial-stress-distribution-of-SiC-Xu-Su/30b5b3b6ec6c343ae602d213591a197416c13f61
  • Gundel, D. B., and D. B. Miracle. 1998. transverse tensile behavior of SiC-fiber/Ti–6Al–4V composites—1. Experimental results. Composites Science and Technology 58 (10):1571–81. doi:10.1016/S0266-3538(97)00217-0.
  • Guo, S. Q., and Y. Kagawa. 1997. Characterization of interface sliding damage in SiC fiber-reinforced Ti-15-3 matrix composite by cyclic fatigue. Acta Materialia 45 (6):2257–70. doi:10.1016/S1359-6454(96)00356-4.
  • Hung, Y.-C., and P. J. Withers. 2012. Fibre bridging during high temperature fatigue crack growth in Ti/SiC composites. Acta Materialia 60 (3):958–71. doi:10.1016/j.actamat.2011.10.036.
  • Kraabel, D. L., B. P. Sanders, and S. Mall. 1997. Tension-compression fatigue behavior of a unidirectional titanium-matrix composite at elevated temperature. Composites Science and Technology 57 (1):99–117. doi:10.1016/S0266-3538(96)00113-3.
  • Li, G. D., S. P. Zhang, H. P. Pei, L. P. An, and X. W. Liu. 2013. Numerical simulation of reinforced TMC properties under transverse tensility. Gas Turbine Experiment and Research 26:37–43.
  • Li, H., X. Huang, H. Huang, M. J. Wang, and c Xie. 2016. Investigation on interface reaction in continuous SiC fiber reinforced titanium composites. Forging and Stamping Technology 41:103–8.
  • Li, J., Y. Yang, M. Yuan, X. Luo, and L. Li. 2008. Effect of properties of SiC fibers on longitudinal tensile behavior of SiCf/Ti-6Al-4V composites. Transactions of Nonferrous Metals Society of China 18 (3):523–30. doi:10.1016/S1003-6326(08)60092-8.
  • Li, J., Y. Yang, X. Luo, and M. Yuan. 2007. Measurement of the longitudinal thermal residual stress in continuous SiC fiber reinforced titanium matrix composites. Heat Treatment of Metals 32 (11):65–9.
  • Li, L.-B. 2010. Fatigue damage models and life prediction of long-fiber-einforced ceramic matrix composites. PhD diss., Nanjing University of Aeronautics and Astronautics.
  • Liu, Y., Z. Sun, X. Niu, X. Chen, Y. Song, and P. Zou. 2021. The constitutive model of a unidirectional SiC fiber-reinforced titanium matrix composite during spectrum loading. Applied Composite Materials 28 (4):1019–37. doi:10.1007/s10443-021-09881-3.
  • Lou, J. H., Y. Q. Yang, X. Luo, M. N. Yuan, and G. H. Feng. 2010. The analysis on transverse tensile behavior of SiC/Ti–6Al–4V composites by finite element method. Materials & Design 31 (8):3949–53. doi:10.1016/j.matdes.2010.03.034.
  • Lou, J. H., Y. Yang, Q. Sun, J. Li, and X. Luo. 2011. Study on longitudinal tensile properties of SiCf/Ti–6Al–4V composites with different interfacial shear strength. Materials Science and Engineering: A 529:88–93. doi:10.1016/j.msea.2011.09.002.
  • Niu, X., Y. Liu, X. Chen, J. Liu, Z. Sun, and Y. Song. 2021. Growth behavior of short fatigue cracks in a unidirectional SiC fiber-reinforced titanium matrix composite under spectrum loading. Theoretical and Applied Fracture Mechanics 114:102980. doi:10.1016/j.tafmec.2021.102980.
  • Pickard, S. M., D. B. Miracle, B. S. Majumdar, K. L. Kendig, L. Rothenflue, and D. Coker. 1995. An experimental study of residual fiber strains in Ti-15-3 continuous fiber composites. Acta Metallurgica et Materialia 43 (8):3105–12. doi:10.1016/0956-7151(94)00436-L.
  • Qing, H., and H. F. Jiang. 2001. Fibre-reinforced mental matrix composites and application on aircraft engine. Gas Turbine Experiment and Research 14 (1):33–7.
  • Ruan, S.-M. 2015. Research on strength analysis method of metal matrix composites [Internet] MA Eng. thesis. Nanjing University of Aeronautics and Astronautics. Accessed 2022, Jun 30. https://oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201701&filename=1015952218.nh&uniplatform=OVERSEAS_EN&v=WBvmpZPECSnJdS2TB6zdESSL3lY7-cq8aEO0UGQNm4Br-j_-Ysbqe0SE1CFWhSvP.
  • Shen, G., and G. Hu. 2006. Mechanics of composite materials. Beijing, China: Tsinghua University Press. Accessed 2022, Jul 27. https://baike.baidu.com/item/%E5%A4%8D%E5%90%88%E6%9D%90%E6%96%99%E5%8A%9B%E5%AD%A6/15450502.
  • Sun, J. F. 2017. Study on mechanical behaviors of SiCf/Ti composite under tensile and fatigue loads [Internet] [MA. Eng]. Nanjing University of Aeronautics and Astronautics. Accessed May 25, 2021. https://cdmd.cnki.com.cn/Article/CDMD-10287-1017874876.htm
  • Sun, Q., X. Luo, Y. Q. Yang, G. H. Feng, G. M. Zhao, and B. Huang. 2015. A review on the research progress of push-out method in testing interfacial properties of SiC fiber-reinforced titanium matrix composites. Composite Interfaces 22 (5):367–86. doi:10.1080/09276440.2015.1032150.
  • Sun, W., Z. Sun, Q. Lu, X. Chen, and Y. Song. 2019. Fatigue hysteresis loops simulation of SiCf/Ti composites under two-stage cyclic loading. Applied Composite Materials 26 (3):1041–57. doi:10.1007/s10443-019-09765-7.
  • Wang, M., H. Chen, R. Bai, and F. Chen. 2007. Evolvement of matrix micro-crack damage of stiffened composite plates excited by simple harmonic dynamic load. Acta Materiae Compositae Sinica 24:172–8.
  • Wang, P. C., S. M. Jeng, J.-M. Yang, and A. K. Mal. 1996. Fatigue life prediction of fiber-reinforced titanium matrix composites. Acta Materialia 44 (3):1097–108. doi:10.1016/1359-6454(95)00202-2.
  • Wang, Q. R., Q. L. Zhang, Y. W. Cheng, J. P. Chu, X. N. Ju, S. Y. Wei, et al. 1996. Ti-15-3 alloy property data. Journal of Materials Engineering 24 (11):17–21.
  • Zhao, T. Y., L. P. Jiang, H. G. Pan, J. Yang, and S. Kitipornchai. 2021. Coupled free vibration of a functionally graded pre-twisted blade-shaft system reinforced with graphene nanoplatelets. Composite Structures 262:113362. doi:10.1016/j.compstruct.2020.113362.
  • Zhao, T. Y., Y. S. Cui, H. G. Pan, H. Q. Yuan, and J. Yang. 2021. Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. International Journal of Mechanical Sciences 197:106335. doi:10.1016/j.ijmecsci.2021.106335.
  • Zhao, T. Y., Y. S. Cui, Y. Q. Wang, and H. G. Pan. 2021. Vibration characteristics of graphene nanoplatelet reinforced disk-shaft rotor with eccentric mass. Mechanics of Advanced Materials and Structures 29:1–21.
  • Zhou, Y. G., and Y. Q. Yang. 2009. Progress in the study of titanium matrix composites reinforced by SiC fibers. Acta Metallurgica Sinica 38:461–5.
  • Zou, Y., L. Tong, and G. P. Steven. 2000. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. Journal of Sound and Vibration 230 (2):357–78. doi:10.1006/jsvi.1999.2624.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.