96
Views
5
CrossRef citations to date
0
Altmetric
Articles

Torsional buckling response of FG porous thick truncated conical shell panels reinforced by GPLs supporting on Winkler elastic foundation

, &
Pages 3552-3581 | Received 03 Jan 2023, Accepted 17 Apr 2023, Published online: 11 Sep 2023

References

  • Al-Furjan, M. S. H., S. A. Moghadam, R. Dehini, L. Shan, M. Habibi, and H. Safarpour. 2021. Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling. Thin-Walled Structures 159:107242. doi:10.1016/j.tws.2020.107242.
  • Alsallami, S. A., H. Zahir, T. Muhammad, A. U. Hayat, M. R. Khan, and A. Ali. 2022. Numerical simulation of Marangoni Maxwell nanofluid flow with Arrhenius activation energy and entropy anatomization over a rotating disk. Waves in Random and Complex Media:1–19. doi:10.1080/17455030.2022.2045385.
  • Amabili, M. 2018. Nonlinear mechanics of shells and plates in composite, soft and biological materials. UK: Cambridge University Press.
  • Anamagh, M. R., and B. Bediz. 2020. Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach. Composite Structures 253:112765. doi:10.1016/j.compstruct.2020.112765.
  • Ansari, R., R. Hassani, R. Gholami, and H. Rouhi. 2020. Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach. International Journal of Non-Linear Mechanics 126:103556. doi:10.1016/j.ijnonlinmec.2020.103556.
  • Arefi, M., S. K. Moghaddam, E. M. R. Bidgoli, M. Kiani, and O. Civalek. 2021. Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads. Composite Structures 255:112924. ‏ doi:10.1016/j.compstruct.2020.112924.
  • Asemi, K., M. Babaei, and F. Kiarasi. 2022. Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets. Mechanics Based Design of Structures and Machines 50 (11):3853–81. doi:10.1080/15397734.2020.1822865.
  • Babaei, M., K. Asemi, and F. Kiarasi. 2021. Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials. Thin-Walled Structures 164:107852. ‏ doi:10.1016/j.tws.2021.107852.
  • Babaei, M., K. Asemi, and F. Kiarasi. 2023. Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method. Mechanics Based Design of Structures and Machines 51 (3):1272–96. ‏ doi:10.1080/15397734.2020.1864401.
  • Babaei, M., K. Asemi, and P. Safarpour. 2019a. Natural frequency and dynamic analyses of functionally graded saturated porous beam resting on viscoelastic foundation based on higher order beam theory. Journal of Solid Mechanics 11:615–34. ‏
  • Babaei, M., K. Asemi, and P. Safarpour. 2019b. Buckling and static analyses of functionally graded saturated porous thick beam resting on elastic foundation based on higher order beam theory. Iranian Journal of Mechanical Engineering Transactions of the ISME 20:94–112.
  • Babaei, H., M. Jabbari, and M. R. Eslami. 2021. The effect of porosity on elastic stability of toroidal shell segments made of saturated porous functionally graded materials. Journal of Pressure Vessel Technology 143 (3):031501. ‏ doi:10.1115/1.4048418.
  • Bourada, M., A. Bouadi, A. A. Bousahla, A. Senouci, F. Bourada, A. Tounsi, and S. R. Mahmoud. 2019. Buckling behavior of rectangular plates under uniaxial and biaxial compression. Structural Engineering and Mechanics 70:113–23.
  • Chan, D. Q., P. Van Hoan, N. T. Trung, L. K. Hoa, and D. T. Huan. 2021. Nonlinear buckling and post-buckling of imperfect FG porous sandwich cylindrical panels subjected to axial loading under various boundary conditions. Acta Mechanica 232 (3):1163–79. doi:10.1007/s00707-020-02882-6.
  • Chandra, N., K. V. Nagendra Gopal, and S. Raja. 2017. Vibro-acoustic response of sandwich plates with functionally graded core. Acta Mechanica 228 (8):2775–89.‏ doi:10.1007/s00707-015-1513-1.
  • Chandra, N., S. Raja, and K. N. Gopal. 2014. Vibro-acoustic response and sound transmission loss analysis of functionally graded plates. Journal of Sound and Vibration 333 (22):5786–802. ‏ doi:10.1016/j.jsv.2014.06.031.
  • Chandra, N., S. Raja, and K. V. N. Gopal. 2015. A comprehensive analysis on the structural–acoustic aspects of various functionally graded plates. International Journal of Applied Mechanics 7 (5):1550072. ‏ doi:10.1142/S1758825115500726.
  • Chen, D., J. Yang, and S. Kitipornchai. 2019. Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Archives of Civil and Mechanical Engineering 19 (1):157–70. doi:10.1016/j.acme.2018.09.004.
  • Dong, Y. H., L. W. He, L. Wang, Y. H. Li, and J. Yang. 2018. Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study. Aerospace Science and Technology 82–83:466–78. doi:10.1016/j.ast.2018.09.037.
  • Dong, Y., X. Li, K. Gao, Y. Li, and J. Yang. 2020. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: Effects of spinning motion and thermal environment. Nonlinear Dynamics 99 (2):981–1000. doi:10.1007/s11071-019-05297-8.
  • Dong, Y. H., B. Zhu, Y. Wang, L. W. He, Y. H. Li, and J. Yang. 2019. Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads. Applied Mathematical Modelling 71:331–48. doi:10.1016/j.apm.2019.02.024.
  • Gibson, I. J., and M. F. Ashby. 1982. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382 (1782):43–59.
  • Hai, L. T., N. V. Long, T. M. Tu, and C. T. Binh. 2022. Post-buckling response of functionally graded porous plates rested on elastic substrate via first-order shear deformation theory. In Modern mechanics and applications, 761–79. Singapore: Springer.
  • Hoa, L. K., P. V. Hoan, B. T. T. Hoai, and D. Q. Chan. 2022. Nonlinear buckling and postbuckling of ES-FG porous cylindrical shells under external pressure. In Modern mechanics and applications, 743–54. Singapore: Springer. ‏
  • Hung, D. X., T. M. Tu, N. Van Long, and P. H. Anh. 2020. Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads. Aerospace Science and Technology 107:106253. doi:10.1016/j.ast.2020.106253.
  • Jabbari, M., A. Mojahedin, and M. Haghi. 2014. Buckling analysis of thin circular FG plates made of saturated porous-soft ferromagnetic materials in transverse magnetic field. Thin-Walled Structures 85:50–6. doi:10.1016/j.tws.2014.07.018.
  • Jabbari, M., M. Rezaei, and A. Mojahedin. 2016. Mechanical buckling of FG saturated porous rectangular plate with piezoelectric actuators. Iranian Journal of Mechanical Engineering 17:46.
  • Kamranfard, M. R., A. R. Saidi, and A. Naderi. 2018. Analytical solution for vibration and buckling of annular sectorial porous plates under in-plane uniform compressive loading. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (12):2211–28. doi:10.1177/0954406217716197.
  • Khakimova, R., D. Wilckens, J. Reichardt, R. Zimmermann, and R. Degenhardt. 2016. Buckling of axially compressed CFRP truncated cones: Experimental and numerical investigation. Composite Structures 146:232–47. doi:10.1016/j.compstruct.2016.02.023.
  • Khorshidvand, A. R., and A. R. Damercheloo. 2023. Bending, axial buckling and shear buckling analyses of FG-porous plates based on a refined plate theory. Australian Journal of Mechanical Engineering 21 (2):705–24. doi:10.1080/14484846.2021.1913869.
  • Kiarasi, F., M. Babaei, K. Asemi, R. Dimitri, and F. Tornabene. 2021a. Three-dimensional buckling analysis of functionally graded saturated porous rectangular plates under combined loading conditions. Applied Sciences 11 (21):10434. ‏ doi:10.3390/app112110434.
  • Kiarasi, F., M. Babaei, S. Mollaei, M. Mohammadi, and K. Asemi. 2021b. Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets. Advances in Nano Research 11:361–80. ‏
  • Kitipornchai, S., D. Chen, and J. Yang. 2017. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials & Design 116:656–65. doi:10.1016/j.matdes.2016.12.061.
  • Liu, G. R. 1997. A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Composite Structures 40 (3–4):313–22. doi:10.1016/S0263-8223(98)00033-6.
  • Long, V. T., and H. V. Tung. 2022. Mechanical buckling analysis of thick FGM toroidal shell segments with porosities using Reddy’s higher order shear deformation theory. Mechanics of Advanced Materials and Structures 29 (27):5923–32.‏ doi:10.1080/15376494.2021.1969606.
  • Magnucka-Blandzi, E. 2008. Axi-symmetrical deflection and buckling of circular porous-cellular plate. Thin-Walled Structures 46 (3):333–7. ‏ doi:10.1016/j.tws.2007.06.006.
  • Magnucki, K., and P. Stasiewicz. 2004. Elastic buckling of a porous beam. Journal of Theoretical and Applied Mechanics 42:859–68. ‏
  • Mohammadimehr, M., and M. Meskini. 2020. Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings. Advances in Nano Research 8:69–82.
  • Mojahedin, A., M. Jabbari, A. R. Khorshidvand, and M. R. Eslami. 2016. Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory. Thin-Walled Structures 99:83–90. ‏ doi:10.1016/j.tws.2015.11.008.
  • Nam, V. H., N.-T. Trung, and L. K. Hoa. 2019. Buckling and postbuckling of porous cylindrical shells with functionally graded composite coating under torsion in thermal environment. Thin-Walled Structures 144:106253. ‏ doi:10.1016/j.tws.2019.106253.
  • Nguyen, Q. H., L. B. Nguyen, H. B. Nguyen, and H. Nguyen-Xuan. 2020. A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets. Composite Structures 245:112321. doi:10.1016/j.compstruct.2020.112321.
  • Ni, Z., Y. Fan, Z. Hang, F. Zhu, Y. Wang, C. Feng, and J. Yang. 2023. Damped vibration analysis of graphene nanoplatelet reinforced dielectric membrane using Taylor series expansion and differential quadrature methods. Thin-Walled Structures 184:110493. doi:10.1016/j.tws.2022.110493.
  • Njim, E. K., S. H. Bakhy, and M. Al-Waily. 2021. Analytical and numerical investigation of buckling behavior of functionally graded sandwich plate with porous core. Journal of Applied Science and Engineering 25:339–47.
  • Paimushin, V. N. 2007. Torsional, flexural, and torsional–flexural buckling modes of a cylindrical shell under combined loading. Mechanics of Solids 42 (3):437–46. doi:10.3103/S0025654407030120.
  • Qian, Q., Y. Wang, F. Zhu, C. Feng, J. Yang, and S. Wang. 2022. Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs). Archives of Civil and Mechanical Engineering 22 (1):53. doi:10.1007/s43452-021-00369-2.
  • Rad, E. S., A. R. Saidi, A. S. Rezaei, and M. Askari. 2020. Shear deformation theories for elastic buckling of fluid-infiltrated porous plates: An analytical approach. Composite Structures 254:112829. doi:10.1016/j.compstruct.2020.112829.
  • ‏Rafiee, M. A., J. Rafiee, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar. 2009. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3 (12):3884–90. ‏ doi:10.1021/nn9010472.
  • Rezaei, M., A. Mojahedin, and M. R. Eslami. 2016. Mechanical Buckling of FG saturated porous rectangular plate under temperature field. Iranian Journal of Mechanical Engineering Transactions of the ISME 17:61–78.
  • Shahgholian-Ghahfarokhi, D., G. Rahimi, A. Khodadadi, H. Salehipour, and M. Afrand. 2021. Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure. Mechanics Based Design of Structures and Machines 49 (7):1059–79. doi:10.1080/15397734.2019.1704777.
  • Shahgholian-Ghahfarokhi, D., M. Safarpour, and A. Rahimi. 2021. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mechanics Based Design of Structures and Machines 49 (1):81–102. doi:10.1080/15397734.2019.1666723.
  • Shamsaddini Lori, E., F. Ebrahimi, E. Elianddy Bin Supeni, M. Habibi, and H. Safarpour. 2021. The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Engineering with Computers 37 (4):3489–508. doi:10.1007/s00366-020-01004-z.
  • Shuaib, M., A. Ali, M. A. Khan, and A. Ali. 2020. Numerical investigation of an unsteady nanofluid flow with magnetic and suction effects to the moving upper plate. Advances in Mechanical Engineering 12 (2):168781402090358. 1687814020903588.‏ doi:10.1177/1687814020903588.
  • Song, J., B. Karami, D. Shahsavari, and Ö. Civalek. 2021. Wave dispersion characteristics of graphene reinforced nanocomposite curved viscoelastic panels. Composite Structures 277:114648.‏ doi:10.1016/j.compstruct.2021.114648.
  • Teng, M. W., and Y. Q. Wang. 2021. Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin-Walled Structures 164:107799. ‏ doi:10.1016/j.tws.2021.107799.
  • Thai, D. K., T. M. Tu, L. K. Hoa, D. X. Hung, and N. N. Linh. 2018. Nonlinear stability analysis of eccentrically stiffened functionally graded truncated conical sandwich shells with porosity. Materials 11 (11):2200. ‏‏ doi:10.3390/ma11112200.
  • Twinkle, C. M., and J. Pitchaimani. 2021. Free vibration and stability of graphene platelet reinforced porous nano-composite cylindrical panel: Influence of grading, porosity and non-uniform edge loads. Engineering Structures 230:111670. doi:10.1016/j.engstruct.2020.111670.
  • Wang, Y. Q. 2018. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronautica 143:263–71. ‏ doi:10.1016/j.actaastro.2017.12.004.
  • Wang, Y. Q., C. Ye, and J. W. Zu. 2019. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerospace Science and Technology 85:359–70. doi:10.1016/j.ast.2018.12.022.
  • Wang, Y., Y. Zhou, C. Feng, J. Yang, D. Zhou, and S. Wang. 2022. Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate. Applied Mathematical Modelling 101:239–58. doi:10.1016/j.apm.2021.08.003.
  • Yaghoobi, H., and F. Taheri. 2020. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Composite Structures 252:112700. doi:10.1016/j.compstruct.2020.112700.
  • Yang, J., D. Chen, and S. Kitipornchai. 2018. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures 193:281–94. doi:10.1016/j.compstruct.2018.03.090.
  • Zhou, Z., Y. Ni, Z. Tong, S. Zhu, J. Sun, and X. Xu. 2019. Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. International Journal of Mechanical Sciences 151:537–50. ‏ doi:10.1016/j.ijmecsci.2018.12.012.
  • Zhu, F., C. Feng, Y. Wang, Q. Qian, Z. Hang, J. Yang, and S. Wang. 2023. Damped nonlinear dynamics of FG-GPLRC dielectric beam with active tuning using DQ and IHB methods. International Journal of Structural Stability and Dynamics 23 (7):2350079. doi:10.1142/S0219455423500797.
  • Zienkiewicz, O. C., and R. L. Taylor. 2005. The finite element method for solid and structural mechanics. 6th ed. Oxford: Elsevier Butterworth–Heinemann.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.