129
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical fracture analysis of double cantilever microbeam using two-phase local/nonlocal integral models with discontinuity

Pages 3632-3647 | Received 12 Dec 2022, Accepted 14 Apr 2023, Published online: 04 May 2023

References

  • Akgoz, B., and O. Civalek. 2015. A novel microstructure-dependent shear deformable beam model [Article]. International Journal of Mechanical Sciences 99:10–20. doi:10.1016/j.ijmecsci.2015.05.003.
  • Akgoz, B., and O. Civalek. 2022. Buckling analysis of functionally graded tapered microbeams via Rayleigh-Ritz method [Article]. Mathematics 10 (23):4429. doi:10.3390/math10234429.
  • Apuzzo, A., R. Barretta, R. Luciano, F. M. de Sciarra, and R. Penna. 2017. Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Composites Part B: Engineering 123:105–11. doi:10.1016/j.compositesb.2017.03.057.
  • Arda, M. 2022. Evaluation of optimum length scale parameters in longitudinal wave propagation on nonlocal strain gradient carbon nanotubes by lattice dynamics [Article]. Mechanics Based Design of Structures and Machines 50 (12):4363–86. doi:10.1080/15397734.2020.1835488.
  • Atacan, A. T., and R. F. Yukseler. 2022. Snap-through instability of slightly curved beams under sinusoidal loading based on nonlocal elasticity theory. Mechanics Based Design of Structures and Machines 50 (8):2940–60. doi:10.1080/15397734.2021.1901736.
  • Barretta, R., M. Čanađija, R. Luciano, and F. M. de Sciarra. 2018. Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. International Journal of Engineering Science. 126:53–67. doi:10.1016/j.ijengsci.2018.02.012.
  • Barretta, R., A. Caporale, S. A. Faghidian, R. Luciano, F. M. de Sciarra, and C. M. Medaglia. 2019. A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Composites Part B: Engineering 164:590–8. doi:10.1016/j.compositesb.2019.01.012.
  • Barretta, R., S. A. Faghidian, and F. M. de Sciarra. 2019. Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. International Journal of Engineering Science. 136:38–52. doi:10.1016/j.ijengsci.2019.01.003.
  • Barretta, R., S. A. Faghidian, R. Luciano, C. M. Medaglia, and R. Penna. 2018. Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models. Composites Part B: Engineering 154:20–32. doi:10.1016/j.compositesb.2018.07.036.
  • Benvenuti, E., and A. Simone. 2013. One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect. Mechanics Research Communications 48:46–51. English. doi:10.1016/j.mechrescom.2012.12.001.
  • Bian, P., and H. Qing. 2021. Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model. Applied Mathematics and Mechanics 42 (3):425–40. doi:10.1007/s10483-021-2708-9.
  • Bian, P.-L., H. Qing, and C.-F. Gao. 2021. One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: Close form solution and consistent size effect. Applied Mathematical Modelling 89:400–12. doi:10.1016/j.apm.2020.07.058.
  • Bian, P.-L., H. Qing, and T. Yu. 2022. A new finite element method framework for axially functionally-graded nanobeam with stress-driven two-phase nonlocal integral model. Composite Structures 295:115769.
  • Caporale, A., H. Darban, and R. Luciano. 2022. Exact closed-form solutions for nonlocal beams with loading discontinuities. Mechanics of Advanced Materials and Structures 29 (5):694–704. doi:10.1080/15376494.2020.1787565.
  • Eringen, A. C. 1972. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science 10 (5):425–35. doi:10.1016/0020-7225(72)90050-X.
  • Eringen, A. C. 1987. Theory of nonlocal elasticity and some applications. Res Mechanica 21 (4):313–42.
  • Ghanbari, B., M. Ghadiri, and H. SafarPour. 2022. A modified strain gradient shell model for vibration analysis of DWCNT conveying viscous fluid including surface effects. Mechanics Based Design of Structures and Machines 50 (5):1506–36. doi:10.1080/15397734.2020.1753533.
  • He, Y., H. Qing, and C. Gao. 2020. Theoretical analysis of free vibration of microbeams under different boundary conditions using stress-driven nonlocal integral model. International Journal of Structural Stability and Dynamics 20 (3):2050040. doi:10.1142/S0219455420500406.
  • Jiang, P., H. Qing, and C. F. Gao. 2020. Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model. Applied Mathematics and Mechanics 41 (2):207–32. English. doi:10.1007/s10483-020-2569-6.
  • Khaniki, H. B. 2018a. On vibrations of nanobeam systems. International Journal of Engineering Science 124:85–103. doi:10.1016/j.ijengsci.2017.12.010.
  • Khaniki, H. B. 2018b. Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model. Physica E: Low-Dimensional Systems and Nanostructures 99:310–9. doi:10.1016/j.physe.2018.02.008.
  • Khaniki, H. B. 2019. On vibrations of FG nanobeams. International Journal of Engineering Science 135:23–36. doi:10.1016/j.ijengsci.2018.11.002.
  • Khaniki, H. B., S. Hosseini-Hashemi, and H. B. Khaniki. 2018. Dynamic analysis of nano-beams embedded in a varying nonlinear elastic environment using Eringen’s two-phase local/nonlocal model. European Physical Journal Plus 133 (7).
  • Kiani, K., and K. K. Zur. 2021. Vibrations of double-nanorod-systems with defects using nonlocal-integral-surface energy-based formulations. Composite Structures 256:113028.
  • Koiter, W. T. 1964. Couple stresses in the theory of elasticity, I and II. Proceedings Series B, Koninklijke Nederlandse Akademie van Wetenschappen 67:17–44.
  • Kröner, E. 1967. Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures 3 (3):12.
  • Lam, D. C. C., F. Yang, A. C. M. Chong, J. Wang, and P. Tong. 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51 (8):1477–508. English. doi:10.1016/S0022-5096(03)00053-X.
  • Lawn, B. 1993. Fracture of brittle solids. 2nd ed. Cambridge: Cambridge University Press.
  • Li, C., L. Q. Yao, W. Q. Chen, and S. Li. 2015. Comments on nonlocal effects in nano-cantilever beams [Article]. International Journal of Engineering Science. 87:47–57. English. doi:10.1016/j.ijengsci.2014.11.006.
  • McDowell, M. T., A. M. Leach, and K. Gall. 2008. On the elastic modulus of metallic nanowires. Nano Letters 8 (11):3613–8. doi:10.1021/nl801526c.
  • Mindlin, R. D. 1965. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures 1 (4):417–38. doi:10.1016/0020-7683(65)90006-5.
  • Peddieson, J., G. R. Buchanan, and R. P. McNitt. 2003. Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science 41 (3–5):305–12. doi:10.1016/S0020-7225(02)00210-0.
  • Peng, W., L. Chen, and T. He. 2021. A memory-dependent thermal-viscoelastic model and its application in heating-induced nonlocal response analysis of a polymer microbeam. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2021.1947854.
  • Pourasghar, A., W. Yang, J. Brigham, and Z. Chen. 2021. Nonlocal thermoelasticity: Transient heat conduction effects on the linear and nonlinear vibration of single-walled carbon nanotubes. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2021.1985516.
  • Qing, H. 2022. On well-posedness of two-phase local/nonlocal integral polar models for consistent axisymmetric bending of circular microplates. Applied Mathematics and Mechanics (English Edition). 43 (5):637–52. doi:10.1007/s10483-022-2843-9.
  • Qing, H., and Y. Cai. 2023. Semi-analytical and numerical post-buckling analysis of nanobeam using two-phase nonlocal integral models. Archive of Applied Mechanics 93 (1):129–49. doi:10.1007/s00419-021-02099-6.
  • Qing, H., and L. Wei. 2022. Linear and nonlinear free vibration analysis of functionally graded porous nanobeam using stress-driven nonlocal integral model. Communications in Nonlinear Science and Numerical Simulation 109:106300. doi:10.1016/j.cnsns.2022.106300.
  • Ren, Y. M., and H. Qing. 2022. Bending and buckling analysis of functionally graded Timoshenko nanobeam using two-phase local/nonlocal piezoelectric integral model. Composite Structures 300 (15):116129. doi:10.1016/j.compstruct.2022.116129.
  • Ren, Y., and H. Qing. 2021. On the consistency of two-phase local/nonlocal piezoelectric integral model. Applied Mathematics and Mechanics 42 (11):1581–98. doi:10.1007/s10483-021-2785-7.
  • Ren, Y.-M., and H. Qing. 2021. Bending and buckling analysis of functionally graded Euler-Bernoulli beam using stress-driven nonlocal integral model with Bi-Helmholtz kernel. International Journal of Applied Mechanics 13 (4):2150041. doi:10.1142/S1758825121500411.
  • Romano, G., and R. Barretta. 2017. Nonlocal elasticity in nanobeams: The stress-driven integral model. International Journal of Engineering Science 115:14–27. doi:10.1016/j.ijengsci.2017.03.002.
  • Romano, G., and R. Barretta. 2017. Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Composites Part B: Engineering 114:184–8. doi:10.1016/j.compositesb.2017.01.008.
  • Romano, G., R. Barretta, M. Diaco, and F. M. de Sciarra. 2017. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences 121:151–6. doi:10.1016/j.ijmecsci.2016.10.036.
  • Romano, G., R. Luciano, R. Barretta, and M. Diaco. 2018. Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Continuum Mechanics and Thermodynamics 30 (3):641–55. doi:10.1007/s00161-018-0631-0.
  • Scorza, D., R. Luciano, and S. Vantadori. 2022. Fracture behaviour of nanobeams through two-phase local/nonlocal stress-driven model. Composite Structures 280:114957.
  • Stan, G., C. V. Ciobanu, P. M. Parthangal, and R. F. Cook. 2007. Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Letters 7 (12):3691–7. doi:10.1021/nl071986e.
  • Tang, Y., and H. Qing. 2021. Elastic buckling and free vibration analysis of functionally graded Timoshenko beam with nonlocal strain gradient integral model. Applied Mathematical Modelling 96:657–77. doi:10.1016/j.apm.2021.03.040.
  • Wang, Y., K. Huang, X. Zhu, and Z. Lou. 2019. Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Mathematics and Mechanics of Solids 24 (3):559–72. doi:10.1177/1081286517750008.
  • Wang, Y. B., X. W. Zhu, and H. H. Dai. 2016. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Advances 6 (8):085114. doi:10.1063/1.4961695.
  • Yang, F., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi:10.1016/S0020-7683(02)00152-X.
  • Zhang, H., X. F. Li, G. J. Tang, and Z. B. Shen. 2013. Stress intensity factors of double cantilever nanobeams via gradient elasticity theory. Engineering Fracture Mechanics 105:58–64. doi:10.1016/j.engfracmech.2013.03.005.
  • Zhang, P., and H. Qing. 2020. Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model. Acta Mechanica 231 (12):5251–76. doi:10.1007/s00707-020-02815-3.
  • Zhang, P., and H. Qing. 2021a. On well-posedness of two-phase nonlocal integral models for higher-order refined shear deformation beams. Applied Mathematics and Mechanics 42 (7):931–50. doi:10.1007/s10483-021-2750-8.
  • Zhang, P., and H. Qing. 2021b. Thermoelastic analysis of nanobar based on nonlocal integral elasticity and nonlocal integral heat conduction. Journal of Thermal Stresses 44 (10):1244–61. doi:10.1080/01495739.2021.1967240.
  • Zhang, P., and H. Qing. 2021c. Two-phase nonlocal integral models with a bi-Helmholtz averaging kernel for nanorods. Applied Mathematics and Mechanics 42 (10):1379–96. doi:10.1007/s10483-021-2774-9.
  • Zhang, P., and H. Qing. 2021d. Well-posed two-phase nonlocal integral models for free vibration of nanobeams in context with higher-order refined shear deformation theory. Journal of Vibration and Control 28 (23–24):3808–22. doi:10.1177/10775463211039902.
  • Zhang, P., and H. Qing. 2022a. Buckling analysis of curved sandwich microbeams made of functionally graded materials via the stress-driven nonlocal integral model. Mechanics of Advanced Materials and Structures 29 (9):1211–28. doi:10.1080/15376494.2020.1811926.
  • Zhang, P., and H. Qing. 2022b. Free vibration analysis of Euler-Bernoulli curved beams using two-phase nonlocal integral models. Journal of Vibration and Control 28 (19–20):2861–78. doi:10.1177/10775463211022483.
  • Zhang, J. Q., H. Qing, and C. F. Gao. 2019. Exact and asymptotic bending analysis of microbeams under different boundary conditions using stress‐derived nonlocal integral model. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik 99 (12):e201900148.
  • Zhang, J.-Q., H. Qing, and C.-F. Gao. 2020. Exact and asymptotic bending analysis of microbeams under different boundary conditions using stress-derived nonlocal integral model. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik 100 (1):e201900148.
  • Zhang, P., H. Qing, and C. Gao. 2019. Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen’s nonlocal integral mixed model. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik 99 (8):e201800329.
  • Zhang, P., H. Qing, and C.-F. Gao. 2020. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress -driven nonlocal integral model. Composite Structures 245:112362.
  • Zhu, X., and L. Li. 2017. Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. International Journal of Mechanical Sciences 133:639–50. doi:10.1016/j.ijmecsci.2017.09.030.
  • Zhu, X., Y. Wang, and H.-H. Dai. 2017. Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. International Journal of Engineering Science 116:130–40. doi:10.1016/j.ijengsci.2017.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.