225
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Thermomechanical behavior of lattice structures: An analytical, numerical, and experimental study

, , &
Pages 3700-3723 | Received 29 Mar 2023, Accepted 20 Apr 2023, Published online: 08 May 2023

References

  • Ahmadi, S. M., S. Amin Yavari, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, and A. A. Zadpoor. 2015. Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties. Materials (Basel, Switzerland) 8 (4):1871–96. doi:10.3390/ma8041871.
  • Akgöz, B., and Ö. Civalek. 2022. Buckling analysis of functionally graded tapered microbeams via Rayleigh–Ritz method. Mathematics 10 (23):4429. doi:10.3390/math10234429.
  • Al-Saedi, D. S., and S. Masood. 2018. Mechanical performance of functionally graded lattice structures made with selective laser melting 3D printing. IOP Conference Series: Materials Science and Engineering 433:012078. doi:10.1088/1757-899X/433/1/012078.
  • Ashby, M., and L. Gibson. 1997. Cellular solids: Structure and properties, 175–231. Press Syndicate of the University of Cambridge, Cambridge, UK.
  • Bai, L., C. Gong, X. Chen, Y. Sun, L. Xin, H. Pu, Y. Peng, and J. Luo. 2020. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations. International Journal of Mechanical Sciences 182:105735. doi:10.1016/j.ijmecsci.2020.105735.
  • Bidan, C. M., K. P. Kommareddy, M. Rumpler, P. Kollmannsberger, P. Fratzl, and J. W. Dunlop. 2013. Geometry as a factor for tissue growth: Towards shape optimization of tissue engineering scaffolds. Advanced Healthcare Materials 2 (1):186–94. doi:10.1002/adhm.201200159.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2022. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines 50 (6):1914–31. doi:10.1080/15397734.2020.1766494.
  • Civalek, Ö., B. Uzun, and M. Ö. Yaylı. 2022. An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Computational and Applied Mathematics 41 (2):67. doi:10.1007/s40314-022-01761-1.
  • Dastjerdi, S., and Y. Tadi Beni. 2019. A novel approach for nonlinear bending response of macro-and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mechanics Based Design of Structures and Machines 47 (4):453–78. doi:10.1080/15397734.2018.1557529.
  • Evans, A. G., J. W. Hutchinson, N. A. Fleck, M. Ashby, and H. Wadley. 2001. The topological design of multifunctional cellular metals. Progress in Materials Science 46 (3–4):309–27. doi:10.1016/S0079-6425(00)00016-5.
  • Figgins, B., G. Jones, and D. Riley. 1956. LXXVII. The thermal expansion of aluminium at low temperatures as measured by an X-ray diffraction method. Philosophical Magazine 1 (8):747–58. doi:10.1080/14786435608238150.
  • Ghabezloo, S. 2012. Micromechanical analysis of the effect of porosity on the thermal expansion coefficient of heterogeneous porous materials. International Journal of Rock Mechanics and Mining Sciences 55:97–101. doi:10.1016/j.ijrmms.2012.07.001.
  • Ghavidelnia, N., M. Bodaghi, and R. Hedayati. 2021. Idealized 3D auxetic mechanical metamaterial: An analytical, numerical, and experimental study. Materials 14 (4):993. doi:10.3390/ma14040993.
  • Ha, C. S., E. Hestekin, J. Li, M. E. Plesha, and R. S. Lakes. 2015. Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Physica Status Solidi (b) 252 (7):1431–4. doi:10.1002/pssb.201552158.
  • Habibi, M., A. Mohammadi, H. Safarpour, A. Shavalipour, and M. Ghadiri. 2021. Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mechanics Based Design of Structures and Machines 49 (5):640–58. doi:10.1080/15397734.2019.1697932.
  • Hedayati, R., and M. Sadighi. 2016. A micromechanical approach to numerical modeling of yielding of open-cell porous structures under compressive loads. Journal of Theoretical and Applied Mechanics 54 (3):769–81. doi:10.15632/jtam-pl.54.3.769.
  • Hedayati, R., M. Sadighi, M. Mohammadi-Aghdam, and A. Zadpoor. 2016. Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells. International Journal of Mechanical Sciences 106:19–38. doi:10.1016/j.ijmecsci.2015.11.033.
  • Hedayati, R., M. Sadighi, M. Mohammadi-Aghdam, and A. Zadpoor. 2017. Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells. Applied Mathematical Modelling 46:408–22. doi:10.1016/j.apm.2017.01.076.
  • Hedayati, R., Y. Sheikhnejad, and M. M. Aghdam. 2022. Editorial to the special issue on advanced micro/nanoscale porous materials for novel applications: answering to future needs. Transport in Porous Media 142 (1–2):1–4. doi:10.1007/s11242-022-01763-x.
  • Hedayati, R., A. Yousefi, and M. Bodaghi. 2022. Sandwich structures with repairable cores based on truncated cube cells. Composites Part B: Engineering 243:110124. doi:10.1016/j.compositesb.2022.110124.
  • Heinl, P., L. Müller, C. Körner, R. F. Singer, and F. A. Müller. 2008. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia 4 (5):1536–44. doi:10.1016/j.actbio.2008.03.013.
  • Lakes, R. 1996. Dense solid microstructures with unbounded thermal expansion. Journal of the Mechanical Behavior of Materials 7 (2):85–92. doi:10.1515/JMBM.1996.7.2.85.
  • Lee, J. S., H. D. Cha, J. H. Shim, J. W. Jung, J. Y. Kim, and D. W. Cho. 2012. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication‐based scaffold for bone tissue engineering. Journal of Biomedical Materials Research. Part A 100 (7):1846–53. doi:10.1002/jbm.a.34149.
  • Liu, J., M. Xu, R. Zhang, X. Zhang, and W. Xi. 2022. Progress of porous/lattice structures applied in thermal management technology of aerospace applications. Aerospace 9 (12):827. doi:10.3390/aerospace9120827.
  • Loh, Q. L., and C. Choong. 2013. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size.
  • Lu, T., L. Valdevit, and A. Evans. 2005. Active cooling by metallic sandwich structures with periodic cores. Progress in Materials Science 50 (7):789–815. doi:10.1016/j.pmatsci.2005.03.001.
  • Maaßdorf, A., U. Zeimer, J. Grenzer, and M. Weyers. 2013. Linear thermal expansion coefficient determination using in situ curvature and temperature dependent X-ray diffraction measurements applied to metalorganic vapor phase epitaxy-grown AlGaAs. Journal of Applied Physics 114 (3):033501. doi:10.1063/1.4812369.
  • Milward, S., H. Swygart, L. Eccles, S. Brown, and N. Lavery. 2017. Controlling thermal expansion with lattice structures using laser powder bed fusion. 2017 International Solid Freeform Fabrication Symposium.
  • Murr, L., K. Amato, S. Li, Y. Tian, X. Cheng, S. Gaytan, E. Martinez, P. Shindo, F. Medina, and R. Wicker. 2011. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials 4 (7):1396–411. doi:10.1016/j.jmbbm.2011.05.010.
  • Neff, C., N. Hopkinson, and N. B. Crane. 2018. Experimental and analytical investigation of mechanical behavior of laser-sintered diamond-lattice structures. Additive Manufacturing 22:807–16. doi:10.1016/j.addma.2018.07.005.
  • Parsons, E. M. 2019. Lightweight cellular metal composites with zero and tunable thermal expansion enabled by ultrasonic additive manufacturing: Modeling, manufacturing, and testing. Composite Structures 223:110656. doi:10.1016/j.compstruct.2019.02.031.
  • Qu, J., M. Kadic, A. Naber, and M. Wegener. 2017. Micro-structured two-component 3D metamaterials with negative thermal-expansion coefficient from positive constituents. Scientific Reports 7 (1):1–8. doi:10.1038/srep40643.
  • Ramirez, I. J., K. Matsumaru, and K. Ishizaki. 2006. Development of a near zero thermal expansion porous material. Journal of the Ceramic Society of Japan 114 (1336):1111–4. doi:10.2109/jcersj.114.1111.
  • Roudbarian, N., E. Jebellat, S. Famouri, M. Baniasadi, R. Hedayati, and M. Baghani. 2022. Shape-memory polymer metamaterials based on triply periodic minimal surfaces. European Journal of Mechanics-A/Solids 96:104676. doi:10.1016/j.euromechsol.2022.104676.
  • Sheikhnejad, Y., R. Hedayati, and S. A. G. Nassab. 2022. Preface: novelties and frontiers in porous media: special focus on analytical models (part one). Journal of Porous Media 25 (7):v–vii. doi:10.1615/JPorMedia.2022043654.
  • Wadley, H. N., and D. T. Queheillalt. 2007. Thermal applications of cellular lattice structures. Materials Science Forum 539-543:242–7. doi:10.4028/www.scientific.net/MSF.539-543.242.
  • Wei, K., Y. Peng, K. Wang, S. Duan, X. Yang, and W. Wen. 2018. Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion. Composite Structures 188:287–96. doi:10.1016/j.compstruct.2018.01.030.
  • Wen, T., J. Tian, T. Lu, D. Queheillalt, and H. Wadley. 2006. Forced convection in metallic honeycomb structures. International Journal of Heat and Mass Transfer 49 (19–20):3313–24. doi:10.1016/j.ijheatmasstransfer.2006.03.024.
  • Xu, N., and H.-T. Liu. 2020. A novel 3-D structure with tunable Poisson’s ratio and adjustable thermal expansion. Composites Communications 22:100431. doi:10.1016/j.coco.2020.100431.
  • Zadpoor, A. A. 2015. Bone tissue regeneration: The role of scaffold geometry. Biomaterials Science 3 (2):231–45. doi:10.1039/c4bm00291a.
  • Zadpoor, A., and R. Hedayati. 2016. Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials. Journal of Biomedical Materials Research. Part A 104 (12):3164–74. doi:10.1002/jbm.a.35855.
  • Zimar, A., M. Nowsath, M. Muhammad, and S. Herath. 2016. Non-linear behaviour of open-cell metal foam under tensile loading. 2016 Moratuwa Engineering Research Conference (MERCon). doi:10.1109/MERCon.2016.7480166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.