89
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of porosity influence on thermo-mechanical stability characteristics of skew functionally graded plates using higher order shear deformation theory

ORCID Icon
Pages 3724-3749 | Received 25 Jan 2023, Accepted 17 Apr 2023, Published online: 08 May 2023

References

  • Akgöz, B., and Ö. Civalek. 2022. Buckling analysis of functionally graded tapered microbeams via Rayleigh–Ritz method. Mathematics 10 (23):4429. doi:10.3390/math10234429.
  • Bhangale, R. K., and N. Ganesan. 2005. A linear thermoelastic buckling behavior of functionally graded hemispherical shell with a cut-out at apex in thermal environment. International Journal of Structural Stability and Dynamics 05 (02):185–215. doi:10.1142/S021945540500157X.
  • Bhangale, R. K., N. Ganesan, and C. Padmanabhan. 2006. Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells. Journal of Sound Vibrations 292 (1–2):341–71. doi:10.1016/j.jsv.2005.07.039.
  • Bodaghi, M., M. Shakeri, and M. M. Aghdam. 2015. Thermo-mechanical behavior of shape adaptive composite plates with surface-bonded shape memory alloy ribbons. Composite Structures 119:115–33. doi:10.1016/j.compstruct.2014.08.027.
  • Brischetto, S. 2009. Classical and mixed advanced models for sandwich plates embedding functionally graded cores. Journal of Mechanics of Materials and Structures 4 (1):13–33. doi:10.2140/jomms.2009.4.13.
  • Chen, D., S. Kitipornchai, and J. Yang. 2018. Dynamic response and energy absorption of functionally graded porous structures. Materials and Design 140:473–87. doi:10.1016/j.matdes.2017.12.019.
  • Chen, D., J. Yang, and S. Kitipornchai. 2017. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Composites Science and Technology 142:235–45. doi:10.1016/j.compscitech.2017.02.008.
  • Civalek, Ö., and M. Avcar. 2022. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering with Computers 38 (S1):489–521. doi:10.1007/s00366-020-01168-8.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2022. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines 50 (6):1914–31. doi:10.1080/15397734.2020.1766494.
  • Dastjerdi, S., B. Akgöz, and Ö. Civalek. 2020. On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science 149:103236. doi:10.1016/j.ijengsci.2020.103236. (https://www.sciencedirect.com/science/article/pii/S0020722520300240.)
  • Dat, N. D., T. Q. Quan, and N. D. Duc. 2021. Nonlinear thermal dynamic buckling and global optimization of smart sandwich plate with porous homogeneous core and carbon nanotube reinforced nanocomposite layers. Euro J Mech/A Solids 90:104351. doi:10.1016/j.euromechsol.2021.104351.
  • Dhuria, M., N. Grover, and K. Goyal. 2021. Influence of porosity distribution on static and buckling responses of porous functionally graded plates. Structures 34:1458–74. doi:10.1016/j.istruc.2021.08.050.
  • Fang, W., J. Zhang, T. Yu, and T. Q. Bui. 2021. Analysis of thermal effect on buckling of imperfect FG composite plates by adaptive XIGA. Composite Structures 275:114450. doi:10.1016/j.compstruct.2021.114450.
  • Farrokh, M., M. Taheripur, and E. Carrera. 2022. Optimum distribution of materials for functionally graded rectangular plates considering thermal buckling. Composite Structures 289:115401. doi:10.1016/j.compstruct.2022.115401.
  • Frikha, A., and F. Dammak. 2017. Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element. Computer Methods in Applied Mechanics and Engineering 315:1–24. doi:10.1016/j.cma.2016.10.017.
  • Frikha, A., M. Wali, A. Hajlaoui, and F. Dammak. 2016. Dynamic response of functionally graded material shells with a discrete double directors shell element. Composite Structures 154:385–95. doi:10.1016/j.compstruct.2016.07.021.
  • Frikha, A., S. Zghal, and F. Dammak. 2018a. Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerospace Science and Technology 78:438–51. doi:10.1016/j.ast.2018.04.048.
  • Frikha, A., S. Zghal, and F. Dammak. 2018b. Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shells analysis. Computer Methods in Applied Mechanics and Engineering 329:289–311. doi:10.1016/j.cma.2017.10.013.
  • Ganapathi, M., and T. Prakash. 2006. Thermal buckling of simply supported functionally graded skew plates. Composite Structures 74 (2):247–50. doi:10.1016/j.compstruct.2005.04.004.
  • Ghannadpour, S. A. M., H. R. Ovesy, and M. Nassirnia. 2012. Buckling analysis of functionally graded plates under thermal loadings using the finite strip method. Computers and Structures 108–109:93–9. doi:10.1016/j.compstruc.2012.02.011.
  • Habibi, M., A. Mohammadi, H. Safarpour, A. Shavalipour, and M. Ghadiri. 2021. Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mechanics Based Design of Structures and Machines 49 (5):640–58. doi:10.1080/15397734.2019.1697932.
  • Hajlaoui, A., E. Triki, A. Frikha, M. Wali, and F. Dammak. 2017. Nonlinear dynamics analysis of fgm shell structures with a higher order shear strain enhanced solid-shell element. Latin American Journal of Solids and Structures 14 (1):72–91. doi:10.1590/1679-78253323.
  • Hajlaoui, A., M. Wali, M. Ben Jdidia, and F. Dammak. 2016. An improved enhanced solid shell element for static and buckling analysis of shell structures. Mechanics & Industry 17 (5):510. doi:10.1051/meca/2015106.
  • Hilali, Y., and O. Bourihane. 2022. A meshfree Hermite point interpolation method for buckling and post-buckling analysis of thin plates. Engineering with Computers 38 (S4):3171–90. doi:10.1007/s00366-021-01457-w.
  • Jaberzadeh, E., M. Azhari, and B. Boroomand. 2013. Thermal buckling of functionally graded skew and trapezoidal plates with different boundary conditions using the element free Galerkin method. European Journal of Mechanics; A/Solids 42:18–26. doi:10.1016/j.euromechsol.2013.03.006.
  • Jalaei, M. H., H.-T. Thai, and Ö. Civalek. 2022. On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. International Journal of Engineering Science 172:103629. doi:10.1016/j.ijengsci.2022.103629.
  • Javaheri, R., and M. R. Eslami. 2002a. Buckling of functionally graded plates under in-plane compressive loading. Zeitschrift fur Angewandte Mathematik und Mechanik. 82 (4):277–83. doi:10.1002/1521-4001(200204)82:4<277::AID-ZAMM277>3.0.CO;2-Y.
  • Javaheri, R., and M. R. Eslami. 2002b. Thermal buckling of functionally graded plates. Journals : The American Institute of Aeronautics and Astronautics - AIAA. 40 (1):162–9. doi:10.2514/2.1626.
  • Javaheri, R., and M. R. Eslami. 2002c. Thermal buckling of functionally graded plates based on higher order theory. Journal of Thermal Stresses 25 (7):603–25. doi:10.1080/01495730290074333.
  • Kamali, F., and F. Shahabian. 2021. Analytical solutions for surface stress effects on buckling and post-buckling behavior of thin symmetric porous nano-plates resting on elastic foundation. Archive of Applied Mechanics 91 (6):2853–80. doi:10.1007/s00419-021-01938-w.
  • Kamarian, S., M. Shakeri, M. H. Yas, M. Bodaghi, and A. Pourasghar. 2015. Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs. Journal of Sandwich Structures & Materials 17 (6):632–65. doi:10.1177/1099636215590280.
  • Kandasamy, R., R. Dimitri, and F. Tornabene. 2016. Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments. Composite Structures 157:207–21. doi:10.1016/j.compstruct.2016.08.037.
  • Kiani, Y., E. Bagherizadeh, and M. R. Eslami. 2011. Thermal buckling of clamped thin rectangular fgm plates resting on pasternak elastic foundation (three approximate analytical solutions). ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 91 (7):581–93. doi:10.1002/zamm.201000184.
  • Kiani, Y., and M. R. Eslami. 2013. An exact solution for thermal buckling of annular fgm plates on an elastic medium. Composites Part B: Engineering 45 (1):101–10. doi:10.1016/j.compositesb.2012.09.034.
  • Kiani, Y., and M. R. Eslami. 2014. Nonlinear thermo-inertial stability of thin circular FGM plates. The Journal of the Franklin Institute 351 (2):1057–73. doi:10.1016/j.jfranklin.2013.09.013.
  • Kitipornchai, S., D. Chen, and J. Yang. 2017. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials and Design 116:656–65. doi:10.1016/j.matdes.2016.12.061.
  • Koizumi, M. 1997. FGM activities in Japan. Composites Part B: Engineering 28 (1–2):1–4. doi:10.1016/S1359-8368(96)00016-9.
  • Koohbor, B., and A. Kidane. 2016. Design optimization of continuously and discretely graded foam materials for efficient energy absorption. Materials and Design 102:151–61. doi:10.1016/j.matdes.2016.04.031.
  • Liew, K. M., X. Q. He, T. Y. Ng, and S. Kitipornchai. 2003. Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators. Computational Mechanics 31 (3):350–8. doi:10.1007/s00466-003-0437-0.
  • Liew, K. M., J. Yang, and S. Kitipornchai. 2003. Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures 40 (15):3869–92. doi:10.1016/S0020-7683(03)00096-9.
  • Liew, K. M., J. Yang, and S. Kitipornchai. 2004. Thermal post-buckling of laminated plates comprising FGM with temperature-dependent properties. Journal of Applied Mechanics 71 (6):839–50. doi:10.1115/1.1795220.
  • Mindlin, R. D. 1951. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics 18 (1):31–8. doi:10.1115/1.4010217.
  • Mirzavand, B., and M. R. Eslami. 2008. Thermoelastic stability analysis of imperfect functionally graded cylindrical shells. Journal of Mechanics of Materials and Structures 3 (8):1561–72. doi:10.2140/jomms.2008.3.1561.
  • Mohammadi, H. 2022. Isogeometric thermal buckling analysis of GPL reinforced composite laminated folded plates. Engineering Structures 255:113905. doi:10.1016/j.engstruct.2022.113905.
  • Najafizadeh, M. M., and M. R. Eslami. 2002. First-order-theory-based thermoelastic stability of functionally graded material circular plates. Journals : The American Institute of Aeronautics and Astronautics - AIAA 40 (7):1444–50. doi:10.2514/2.1807.
  • Najafizadeh, M. M., and B. Hedayati. 2004. Refined theory for thermaelastic stability of functionally graded circular plates. Journal of Thermal Stresses 27 (9):857–80. doi:10.1080/01495730490486532.
  • Nejati, M., R. Dimitri, F. Tornabene, and M. Hossein Yas. 2017. Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by functionally graded wavy carbon nanotubes with temperature-dependent properties. Applied Sciences 7 (12):1223. doi:10.3390/app7121223.
  • Reddy, J. N. 1984a. A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures 20 (9–10):881–96. doi:10.1016/0020-7683(84)90056-8.
  • Reddy, J. N. 1984b. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics 51 (4):745–52. doi:10.1115/1.3167719.
  • Sadeghi Gughari, M., A. R. Saidi, A. S. Rezaei, M. Askari, and A. Naderi. 2022. Analytical buckling response of sectorial porous plates integrated with piezoelectric layers. Applied Mathematical Modelling 101:811–31. doi:10.1016/j.apm.2021.09.019.
  • Sahmani, S., M. M. Aghdam, and T. Rabczuk. 2018. Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Composite Structures 186:68–78. doi:10.1016/j.compstruct.2017.11.082.
  • Salari, E., and S. A. Sadough Vanini. 2022. Small/large amplitude vibration, snap-through and nonlinear thermo-mechanical instability of temperature-dependent FG porous circular nanoplates. Engineering with Computers. doi:10.1007/s00366-022-01629-2.
  • Shahsiah, R., and M. R. Eslami. 2003. Thermal buckling od functionally graded cylindrical shell. Journal of Thermal Stresses 26 (3):277–94. doi:10.1080/713855892.
  • Sharma, N., M. Nishad, D. K. Maiti, M. R. Sunny, and B. N. Singh. 2021. Uncertainty quantification in buckling strength of variable stiffness laminated composite plate under thermal loading. Composite Structures 275:114486. doi:10.1016/j.compstruct.2021.114486.
  • Sobhani, E., A. Arbabian, Ö. Civalek, and M. Avcar. 2022. The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Engineering with Computers 38 (S4):3125–52. doi:10.1007/s00366-021-01453-0.
  • Swaminathan, K., and D. M. Sangeetha. 2017. Thermal analysis of FGM plates a critical review of various modeling techniques and solution methods. Computers and Structures 160:43–60. doi:10.1016/j.compstruct.2016.10.047.
  • Tornabene, F., M. Viscoti, and R. Dimitri. 2022a. Static analysis of anisotropic doubly-curved shells with arbitrary geometry and variable thickness resting on a Winkler-Pasternak support and subjected to general loads. Engineering Analysis with Boundary Elements 140:618–73. doi:10.1016/j.enganabound.2022.02.021. (https://www.sciencedirect.com/science/article/pii/S0955799722000625.
  • Tornabene, F., M. Viscoti, and R. Dimitri. 2022b. Static analysis of doubly-curved shell structures of smart materials and arbitrary shape subjected to general loads employing higher order theories and generalized differential quadrature method. Computer Modeling in Engineering & Sciences 133 (3):719–98. doi:10.32604/cmes.2022.022210.
  • Tornabene, F., M. Viscoti, and R. Dimitri. 2023. Static analysis of anisotropic doubly-curved shell subjected to concentrated loads employing higher order layer-wise theories. Computer Modeling in Engineering & Sciences 134 (2):1393–468. doi:10.32604/cmes.2022.022237.
  • Tornabene, F., M. Viscoti, R. Dimitri, and J. N. Reddy. 2021. Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry. Composite Structures 267:113829. doi:10.1016/j.compstruct.2021.113829. https://www.sciencedirect.com/science/article/pii/S0263822321002907.
  • Vel, S. S., and R. C. Batra. 2004. Three-dimensional exact solution for the vibration of functionally graded rectangular plates. Journal of Sound Vibrations.272 (3–5):703–30. doi:10.1016/S0022-460X(03)00412-7.
  • Wali, M., T. Hentati, A. Jarraya, and F. Dammak. 2015. Free vibration analysis of fgm shell structures with a discrete double directors shell element. Composite Structures 125:295–303. doi:10.1016/j.compstruct.2015.02.032.
  • Yang, J., D. Chen, and S. Kitipornchai. 2018. Buckling and free vibration analyses of functionally graded grapheme reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures 193:281–94. doi:10.1016/j.compstruct.2018.03.090.
  • Zghal, S., A. Frikha, and F. Dammak. 2017. Static analysis of functionally graded carbon nanotube- reinforced plate and shell structures. Composite Structures 176:1107–23. doi:10.1016/j.compstruct.2017.06.015.
  • Zghal, S., A. Frikha, and F. Dammak. 2018a. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Applied Mathematical Modelling 53:132–55. doi:10.1016/j.apm.2017.08.021.
  • Zghal, S., A. Frikha, and F. Dammak. 2018b. Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Composites Part B 150 (1):165–83. doi:10.1016/j.compositesb.2018.05.037.
  • Zghal, S., A. Frikha, and F. Dammak. 2018c. Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement. Engineering Structures 158:95–109. doi:10.1016/j.engstruct.2017.12.017.
  • Zhao, X., Y. Y. Lee, and K. M. Liew. 2009. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures 90 (2):161–71. doi:10.1016/j.compstruct.2009.03.005.
  • Zhao, X., and K. M. Liew. 2010. A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels. Computational Mechanics 45 (4):297–310. doi:10.1007/s00466-009-0446-8.
  • Zhao, X., and K. M. Liew. 2011. An element-free analysis of mechanical and thermal buckling of functionally graded conical shell panels. International Journal for Numerical Methods in Engineering 86 (3):269–85. doi:10.1002/nme.3059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.