222
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The optimum inerter-based additional viscoelastic mass dampers for dynamic response mitigation of structures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3775-3798 | Received 12 Dec 2022, Accepted 08 Feb 2023, Published online: 10 May 2023

References

  • Adhikari, S., and B. Pascual. 2009. Eigenvalues of linear viscoelastic systems. Journal of Sound and Vibration 325 (4-5):1000–11. doi:10.1016/j.jsv.2009.04.008.
  • Adhikari, S., and J. Woodhouse. 2001a. Identification of damping: Part 1, viscous damping. Journal of Sound and Vibration 243 (1):43–61. doi:10.1006/jsvi.2000.3391.
  • Adhikari, S., and J. Woodhouse. 2001b. Identification of damping: Part 2, non-viscous damping. Journal of Sound and Vibration 243 (1):63–88. doi:10.1006/jsvi.2000.3392.
  • Batou, A., and S. Adhikari. 2019. Optimal parameters of viscoelastic tuned-mass dampers. Journal of Sound and Vibration 445:17–28. doi:10.1016/j.jsv.2019.01.010.
  • Chen, M. Z., and Y. Hu. 2019. Inerter and its application in vibration control systems. Springer.
  • Chowdhury, S., and A. Banerjee. 2022a. The exact closed-form equations for optimal design parameters of enhanced inerter-based isolation systems. Journal of Vibration and Control :10775463221133428. doi:10.1177/10775463221133428.
  • Chowdhury, S., and A. Banerjee. 2022b. The exact closed-form expressions for optimal design parameters of resonating base isolators. International Journal of Mechanical Sciences 224:107284. doi:10.1016/j.ijmecsci.2022.107284.
  • Chowdhury, S., A. Banerjee, and S. Adhikari. 2021. Enhanced seismic base isolation using inertial amplifiers. In Structures, vol. 33, 1340–53. Elsevier. doi:10.1016/j.istruc.2021.04.089.
  • Chowdhury, S., A. Banerjee, and S. Adhikari. 2022a. The optimal design of dynamic systems with negative stiffness inertial amplifier tuned mass dampers. Applied Mathematical Modelling 114:694–721. doi:10.1016/j.apm.2022.10.011.
  • Chowdhury, S., A. Banerjee, and S. Adhikari. 2022b. Optimal negative stiffness inertial-amplifier-base-isolators: Exact closed-form expressions. International Journal of Mechanical Sciences 218:107044. doi:10.1016/j.ijmecsci.2021.107044.
  • Chowdhury, S., A. Banerjee, and S. Adhikari. 2023. Optimal design of inertial amplifier base isolators for dynamic response control of multi-storey buildings. International Journal of Structural Stability and Dynamics 23 (05):2350047. doi:10.1142/S0219455423500475.
  • Chowdhury, S., A. Banerjee, and S. Adhikari. 2023. The optimum inertial amplifier tuned mass dampers for nonlinear dynamic systems. International Journal of Applied Mechanics 15 (02):2350009. doi:10.1142/S1758825123500096.
  • De Domenico, D., and G. Ricciardi. 2018. Earthquake-resilient design of base isolated buildings with tmd at basement: Application to a case study. Soil Dynamics and Earthquake Engineering 113:503–21. doi:10.1016/j.soildyn.2018.06.022.
  • Deastra, P., D. Wagg, N. Sims, and M. Akbar. 2020. Tuned inerter dampers with linear hysteretic damping. Earthquake Engineering & Structural Dynamics 49 (12):1216–35. doi:10.1002/eqe.3287.
  • Den Hartog, J. P. 1985. Mechanical vibrations. Courier Corporation.
  • Djerouni, S., M. Abdeddaim, S. Elias, and R. Rupakhety. 2021. Optimum double mass tuned damper inerter for control of structure subjected to ground motions. Journal of Building Engineering 44:103259. doi:10.1016/j.jobe.2021.103259.
  • Elias, S., and V. Matsagar. 2018. Wind response control of tall buildings with a tuned mass damper. Journal of Building Engineering 15:51–60. doi:10.1016/j.jobe.2017.11.005.
  • Frahm, H. 1909. Devices for damping vibration of bodies. US Patent.
  • Giaralis, A., and F. Petrini. 2017. Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter (tmdi). Journal of Structural Engineering 143 (9):04017127. doi:10.1061/(ASCE)ST.1943-541X.0001863.
  • Jahangiri, V., C. Sun, and F. Kong. 2021. Study on a 3d pounding pendulum tmd for mitigating bi-directional vibration of offshore wind turbines. Engineering Structures 241:112383. doi:10.1016/j.engstruct.2021.112383.
  • Kaveh, A., M. Fahimi Farzam, H. Hojat Jalali, and R. Maroofiazar. 2020. Robust optimum design of a tuned mass damper inerter. Acta Mechanica 231 (9):3871–96. doi:10.1007/s00707-020-02720-9.
  • Kaynia, A. M., D. Veneziano, and J. M. Biggs. 1981. Seismic effectiveness of tuned mass dampers. Journal of the Structural Division 107 (8):1465–84. doi:10.1061/JSDEAG.0005760.
  • Kuhnert, W. M., P. J. P. Gonçalves, D. F. Ledezma-Ramirez, and M. J. Brennan. 2021. Inerter-like devices used for vibration isolation: A historical perspective. Journal of the Franklin Institute 358 (1):1070–86. doi:10.1016/j.jfranklin.2020.11.007.
  • Leung, A. Y., H. Zhang, C. Cheng, and Y. Lee. 2008. Particle swarm optimization of tmd by non-stationary base excitation during earthquake. Earthquake Engineering & Structural Dynamics 37 (9):1223–46. doi:10.1002/eqe.811.
  • Liu, C., L. Chen, H. P. Lee, Y. Yang, and X. Zhang. 2022. A review of the inerter and inerter-based vibration isolation: Theory, devices, and applications. Journal of the Franklin Institute 359 (14):7677–707. doi:10.1016/j.jfranklin.2022.07.030.
  • Ma, R., K. Bi, and H. Hao. 2021. Inerter-based structural vibration control: A state-of-the-art review. Engineering Structures 243:112655. doi:10.1016/j.engstruct.2021.112655.
  • Marano, G. C., R. Greco, and S. Sgobba. 2010. A comparison between different robust optimum design approaches: Application to tuned mass dampers. Probabilistic Engineering Mechanics 25 (1):108–18. doi:10.1016/j.probengmech.2009.08.004.
  • Marian, L., and A. Giaralis. 2014. Optimal design of a novel tuned mass-damper–inerter (tmdi) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics 38:156–64. doi:10.1016/j.probengmech.2014.03.007.
  • Morga, M., and G. C. Marano. 2014. Optimization criteria of tmd to reduce vibrations generated by the wind in a slender structure. Journal of Vibration and Control 20 (16):2404–16. doi:10.1177/1077546313478296.
  • Papageorgiou, C., N. E. Houghton, and M. C. Smith. 2009. Experimental testing and analysis of inerter devices. Journal of Dynamic Systems, Measurement, and Control 131 (1) doi:10.1115/1.3023120.
  • Pellizzari, F., G. Marano, A. Palmeri, R. Greco, and M. Domaneschi. 2022. Robust optimization of mtmd systems for the control of vibrations. Probabilistic Engineering Mechanics 70:103347. doi:10.1016/j.probengmech.2022.103347.
  • Petrini, F., A. Giaralis, and Z. Wang. 2020. Optimal tuned mass-damper-inerter (tmdi) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting. Engineering Structures 204:109904. doi:10.1016/j.engstruct.2019.109904.
  • Qiao, H., P. Huang, D. De Domenico, and Q. Wang. 2022. Structural control of high-rise buildings subjected to multi-hazard excitations using inerter-based vibration absorbers. Engineering Structures 266:114666. doi:10.1016/j.engstruct.2022.114666.
  • Rathi, A. K., and A. Chakraborty. 2017. Reliability-based performance optimization of tmd for vibration control of structures with uncertainty in parameters and excitation. Structural Control and Health Monitoring 24 (1):e1857. doi:10.1002/stc.1857.
  • Roberts, J. B., and P. D. Spanos. 2003. Random vibration and statistical linearization. Courier Corporation.
  • Ruiz, R., A. Taflanidis, A. Giaralis, and D. Lopez-Garcia. 2018. Risk-informed optimization of the tuned mass-damper-inerter (tmdi) for the seismic protection of multi-storey building structures. Engineering Structures 177:836–50. doi:10.1016/j.engstruct.2018.08.074.
  • Shen, W., A. Niyitangamahoro, Z. Feng, and H. Zhu. 2019. Tuned inerter dampers for civil structures subjected to earthquake ground motions: Optimum design and seismic performance. Engineering Structures 198:109470. doi:10.1016/j.engstruct.2019.109470.
  • Smith, M. C. 2002. Synthesis of mechanical networks: The inerter. IEEE Transactions on Automatic Control 47 (10):1648–62. doi:10.1109/TAC.2002.803532.
  • Wagg, D. J. 2021. A review of the mechanical inerter: Historical context, physical realisations and nonlinear applications. Nonlinear Dynamics 104 (1):13–34. doi:10.1007/s11071-021-06303-8.
  • Wang, Q., H. Qiao, D. De Domenico, Z. Zhu, and Z. Xie. 2019. Wind-induced response control of high-rise buildings using inerter-based vibration absorbers. Applied Sciences 9 (23):5045. doi:10.3390/app9235045.
  • Zhang, Z., and B. Fitzgerald. 2020. Tuned mass-damper-inerter (tmdi) for suppressing edgewise vibrations of wind turbine blades. Engineering Structures 221:110928. doi:10.1016/j.engstruct.2020.110928.
  • Zhang, Z., and C. Høeg. 2021. Inerter-enhanced tuned mass damper for vibration damping of floating offshore wind turbines. Ocean Engineering 223:108663. doi:10.1016/j.oceaneng.2021.108663.
  • Zhao, Z., Q. Chen, R. Zhang, C. Pan, and Y. Jiang. 2020. Energy dissipation mechanism of inerter systems. International Journal of Mechanical Sciences 184:105845. doi:10.1016/j.ijmecsci.2020.105845.
  • Zhao, Z., R. Zhang, Y. Jiang, and C. Pan. 2019. A tuned liquid inerter system for vibration control. International Journal of Mechanical Sciences 164:105171. doi:10.1016/j.ijmecsci.2019.105171.
  • Zheng, Y.-L., L.-Y. Li, and T.-J. Zhang. 2022. Energy analysis and optimization of inerter-based systems. Journal of Vibration and Control 28 (9-10):985–97. doi:10.1177/1077546320987730.
  • Zuo, H., K. Bi, and H. Hao. 2017. Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards. Engineering Structures 141:303–15. doi:10.1016/j.engstruct.2017.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.