68
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

3D static bending analysis of functionally graded piezoelectric microplates resting on an elastic medium subjected to electro-mechanical loads using a size-dependent Hermitian C2 finite layer method based on the consistent couple stress theory

ORCID Icon &
Pages 3799-3841 | Received 25 Jan 2023, Accepted 22 Apr 2023, Published online: 08 May 2023

References

  • Abazid, M. A., and M. Sobhy. 2018. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory. Microsystem Technologies 24 (2):1227–45. doi:10.1007/s00542-017-3492-8.
  • Afshari, H., and N. Adab. 2022. Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mechanics Based Design of Structures and Machines 50 (1):184–205. doi:10.1080/15397734.2020.1713158.
  • Alavi, S. E., M. Sadighi, M. D. Pazhooh, and J. F. Ganghoffer. 2020. Development of size-dependent consistent couple stress theory of Timoshenko beams. Applied Mathematical Modelling 79:685–712. doi:10.1016/j.apm.2019.10.058.
  • Brischetto, S., and E. Carrera. 2009. Refined 2D models for the analysis of functionally graded piezoelectricity plates. Journal of Intelligent Material Systems and Structures 20 (15):1783–97. doi:10.1177/1045389X08098444.
  • Dehkordi, S. F., and Y. T. Beni. 2017. Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. International Journal of Mechanical Sciences 128–129:125–39. doi:10.1016/j.ijmecsci.2017.04.004.
  • Dehsaraji, M. L., A. Loghman, and M. Arefi. 2021. Three-dimensional thermo-electro-mechanical buckling analysis of functionally graded piezoelectric micro/nano-shells based on modified couple stress theory considering thickness stretching effect. Mechanics of Advanced Materials and Structures 28 (19):2030–45. doi:10.1080/15376494.2020.1716419.
  • Eringen, A. C. 1999. Theory of micropolar elasticity. In Microcontinuum field theories, ed. A. C. Eringen. New York: Springer. doi:10.1007/978-1-4612-0555-5_5.
  • Guo, H., T. Rabczuk, and X. Zhuang. 2019. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua 59 (2):433–56. doi:10.32604/cmc.2019.06660.
  • Hadjesfandiari, A. R. 2013. Size-dependent piezoelectricity. International Journal of Solids and Structures 50 (18):2781–91. doi:10.1016/j.ijsolstr.2013.04.020.
  • Hadjesfandiari, A. R., and G. F. Dargush. 2011. Couple stress theory for solids. International Journal of Solids and Structures 48 (18):2496–510. doi:10.1016/j.ijsolstr.2011.05.002.
  • Hadjesfandiari, A. R., and G. F. Dargush. 2013. Fundamental solutions for isotropic size-dependent couple stress elasticity. International Journal of Solids and Structures 50 (9):1253–65. doi:10.1016/j.ijsolstr.2012.12.021.
  • Hung, P. T., P. Phung-Van, and C. H. Thai. 2022. A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory. Composite Structures 289:115467. doi:10.1016/j.compstruct.2022.115467.
  • Koiter, W. T. 1964. Couple stresses in the theory of elasticity, I and II. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen. Series B, Physical Sciences 67:17–44.
  • Lam, D. C. C., F. Yang, A. C. M. Chong, J. Wang, and P. Tong. 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51 (8):1477–508. doi:10.1016/S0022-5096(03)00053-X.
  • Li, Y. S., and E. Pan. 2015. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. International Journal of Engineering Science 97:40–59. doi:10.1016/j.ijengsci.2015.08.009.
  • Lu, P., H. P. Lee, H. P, and C. Lu. 2006. Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism. Composite Structures 72 (3):352–63. doi:10.1016/j.compstruct.2005.01.012.
  • Mindlin, R. D., and H. F. Tiersten. 1962. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis 11 (1):415–48. doi:10.1007/BF00253946.
  • Mindlin, R. D., and N. N. Eshel. 1968. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures 4 (1):109–24. doi:10.1016/0020-7683(68)90036-X.
  • Nejad, M. Z., A. Hadi, and A. Farajpour. 2017. Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials. Structural Engineering and Mechanics 63 (20):161–9.
  • Nguyen, H. X., T. N. Nguyen, M. Abdel-Wahab, S. P. A. Bordas, H. Nguyen-Xuan, and T. P. Vo. 2017. A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Computer Methods in Applied Mechanics and Engineering 313:904–40. doi:10.1016/j.cma.2016.10.002.
  • Nguyen, L. B., C. H. Thai, N. Duong-Nguyen, and H. Nguyen-Xuan. 2022. A size-dependent isogeometric approach for vibration analysis of FG piezoelectric porous microplates using modified strain gradient theory. Engineering with Computers 38 (S5):4415–35. doi:10.1007/s00366-021-01468-7.
  • Nguyen, N. V., and J. Lee. 2021. On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. International Journal of Mechanical Sciences 197:106310. doi:10.1016/j.ijmecsci.2021.106310.
  • Nguyen, V. P., C. Anitescu, S. P. A. Bordas, and T. Rabczuk. 2015. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation 117:89–116. doi:10.1016/j.matcom.2015.05.008.
  • Pan, E. 2001. Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics 68 (4):608–18. doi:10.1115/1.1380385.
  • Phung-Van, P., A. J. M. Ferreira, H. Nguyen-Xuan, and C. H. Thai. 2021. A nonlocal strain gradient isogeometric nonlinear analysis of nanoporous metal foam plates. Engineering Analysis with Boundary Elements 130:58–68. doi:10.1016/j.enganabound.2021.05.009.
  • Phung-Van, P., and C. H. Thai. 2022. A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Engineering with Computers 38 (S3):2027–40. doi:10.1007/s00366-021-01353-3.
  • Phung-Van, P., L. B. Nguyen, L. V. Tran, T. D. Dinh, C. H. Thai, S. P. A. Bordas, M. Abdel-Wahab, and H. Nguyen-Xuan. 2015. An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. International Journal of Non-Linear Mechanics 76:190–202. doi:10.1016/j.ijnonlinmec.2015.06.003.
  • Phung-Van, P., L. V. Tran, A. J. M. Ferreira, H. Nguyen-Xuan, and M. Abdel-Wahab. 2017. Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dynamics 87 (2):879–94. doi:10.1007/s11071-016-3085-6.
  • Qiu, J., S. Sahmani, and B. Safaei. 2023. On the NURBS-based isogeometric analysis for couple stress-based nonlinear instability of PFGM microplates. Mechanics-Based Design of Structures and Machines 51 (2):816–40. doi:10.1080/15397734.2020.1853567.
  • Rabczuk, T., H. Ren, and X. Zhuang. 2019. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua 59 (1):31–55. doi:10.32604/cmc.2019.04567.
  • Razavi, H., A. F. Babadi, and Y. T. Beni. 2017. Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Composite Structures 160:1299–309. doi:10.1016/j.compstruct.2016.10.056.
  • Reddy, J. N. 2013. Mechanics of laminated composite plates and shells: Theory and analysis. New York: CRC Press.
  • Ren, H., X. Zhuang, and T. Rabczuk. 2020. A nonlocal operator method for solving partial differential equations. Computer Methods in Applied Mechanics and Engineering 358:112621. doi:10.1016/j.cma.2019.112621.
  • Salehipour, H., D. Shahgholian-Ghahfarokhi, A. Shahsavar, O. Civalek, and M. Edalati. 2022. Static deflection and free vibration analysis of functionally graded and porous cylindrical micro/nanoshells based on the three-dimensional elasticity and modified couple stress theories. Mechanics Based Design of Structures and Machines 50 (6):2184–205. doi:10.1080/15397734.2020.1775095.
  • Samaniego, E., C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk. 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362:112790. doi:10.1016/j.cma.2019.112790.
  • Thai, C. H., A. J. M. Ferreira, and P. Phung-Van. 2020. Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory. Engineering Analysis with Boundary Elements 117:284–98. doi:10.1016/j.enganabound.2020.05.003.
  • Thai, C. H., H. Nguyen-Xuan, L. B. Nguyen, and P. Phung-Van. 2022. A modified strain gradient meshless approach for functionally graded microplates. Engineering with Computers 38 (S5):4545–67. doi:10.1007/s00366-021-01493-6.
  • Thai, H. T., and S. E. Kim. 2013. A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Composites Part B: Engineering 45 (1):1636–45. doi:10.1016/j.compositesb.2012.09.065.
  • Thai, S., V. X. Nguyen, and Q. X. Lieu. 2022. Bending and free vibration analysis of multi-directional functionally graded plates in thermal environment: A three-dimensional isogeometric analysis approach. Composite Structures 295:115797. doi:10.1016/j.compstruct.2022.115797.
  • Tiersten, H. F. 1969. Linear Piezoelectric Plate Vibrations. New York: Plenum Press.
  • Toupin, R. A. 1962. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis 11 (1):385–414. doi:10.1007/BF00253945.
  • Vel, S. S., R. Mewer, and R. C. Batra. 2004. Analytical solution for the cylindrical bending vibration of piezoelectric composite plates. International Journal of Solids and Structures 41 (5-6):1625–43. doi:10.1016/j.ijsolstr.2003.10.012.
  • Wu, C. P., and C. H. Hsu. 2022. A three-dimensional weak formulation for stress, deformation, and free vibration analyses of functionally graded microscale plates based on the consistent couple stress theory. Composite Structures 296:115829. doi:10.1016/j.compstruct.2022.115829.
  • Wu, C. P., and E. L. Lin. 2022. Free vibration analysis of porous functionally graded piezoelectric microplates resting on an elastic medium subjected to electric voltages. Archives of Mechanics 74 (6):463–511. doi:10.24423/aom.4150.
  • Wu, C. P., and H. X. Hu. 2021. A unified size-dependent plate theory for static bending and free vibration analyses of micro- and nano-scale plates based on the consistent couple stress theory. Mechanics of Materials 162:104085. doi:10.1016/j.mechmat.2021.104085.
  • Wu, C. P., and Y. A. Lu. 2023. A Hermite-family C1 finite layer method for the three-dimensional free vibration analysis of exponentially graded piezoelectric microplates based on the consistent couple stress theory. International Journal of Structural Stability and Dynamics 23 (04):2350044. doi:10.1142/S021945542350044X.
  • Wu, C. P., and Y. C. Liu. 2016. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells. Composite Structures 147:1–15. doi:10.1016/j.compstruct.2016.03.031.
  • Wu, C. P., K. H. Chiu, and Y. M. Wang. 2008. A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. CMC-Computers, Materials, & Continua 8 (2):93–132.
  • Yang, F., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress-based strain gradient theory for elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi:10.1016/S0020-7683(02)00152-X.
  • Zenkour, A. M., and Z. S. Hafed. 2020. Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory. Advances in Aircraft and Spacecraft Science 7 (2):115–34. doi:10.12989/aas.2020.7.2.115.
  • Zhong, Z., and E. T. Shang. 2003. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. International Journal of Solids and Structures 40 (20):5335–52. doi:10.1016/S0020-7683(03)00288-9.
  • Zhuang, X., H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk. 2021. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics A/Solids 87:104225. doi:10.1016/j.euromechsol.2021.104225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.