202
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic modeling and neural network compensation for rotating Euler-Bernoulli beam using a novel deformation description method

, , &
Pages 3870-3899 | Received 14 Nov 2022, Accepted 29 Mar 2023, Published online: 12 May 2023

References

  • Abe, A. 2009. Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation. Mechanism and Machine Theory 44 (9):1627–39. doi:10.1016/j.mechmachtheory.2009.01.009.
  • Ahmadizadeh, M., A. M. Shafei, and M. Fooladi. 2021. Dynamic modeling of closed-chain robotic manipulators in the presence of frictional dynamic forces: A planar case. Mechanics Based Design of Structures and Machines (Early Access) :1–21. doi:10.1080/15397734.2021.1966304.
  • Al-Bedoor, B., and M. Hamdan. 2001. Geometrically non-linear dynamic model of a rotating flexible arm. Journal of Sound and Vibration 240 (1):59–72. doi:10.1006/jsvi.2000.3199.
  • Cao, F., and J. Liu. 2017. An adaptive iterative learning algorithm for boundary control of a coupled ODE–PDE two-link rigid–flexible manipulator. Journal of the Franklin Institute 354 (1):277–97. doi:10.1142/S0129065707000981.
  • Chen, Z., F. Huang, W. Sun, J. Gu, and B. Yao. 2020. RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay. IEEE/ASME Transactions on Mechatronics 25 (2):906–18. doi:10.1109/TMECH.2019.2962081.
  • Chen, J., S. Liu, J. Li, and J. Xie. 2022. Adaptive neural tracking control for stochastic nonlinear multi-agent periodic time-varying systems. Applied Mathematical Modelling 102:228–42. doi:10.1016/j.apm.2021.09.026.
  • Chen, M., C. Jiang, Q. Wu, and W. Chen. 2007. Maintaining synchronization by decentralized feedback control in time delay neural networks with parameter uncertainties. International Journal of Neural Systems 17 (2):115–22. doi:10.1142/S0129065707000981.
  • Damanpack, A., and M. Bodaghi. 2021. Large-deformation instability behaviors of 3D beams supported with 3D hinge joints subjected to axial and torsional loadings. Acta Mechanica 232 (8):2973–89. doi:10.1007/s00707-021-02977-8.
  • Damaren, C., and I. Sharf. 1995. Simulation of flexible-link manipulators with inertial and geometric nonlinearities. Journal of Dynamic Systems, Measurement, and Control 117 (1):74–87. doi:10.1115/1.2798525.
  • Deepika, D. 2022. Frameworks for double hyperbolic function‐based robust sliding mode differentiator and observer for nonlinear dynamics. Asian Journal of Control 24 (1):273–81. doi:10.1002/asjc.2459.
  • Dehkordi, S. 2021. Dynamic analysis of flexible-link manipulator in underwater applications using Gibbs-Appell formulations. Ocean Engineering 241:110057. doi:10.1016/j.oceaneng.2021.110057.
  • Du, Z., W. Yuan, and S. Hu. 2019. Discrete-time event-triggered H-infinity stabilization for networked cascade control systems with uncertain delay. Journal of the Franklin Institute 356 (16):9524–44. doi:10.1016/j.jfranklin.2019.09.018.
  • Fan, J., D. Zhang, and H. Shen. 2020. Dynamic modeling and simulation of a rotating flexible hub-beam based on different discretization methods of deformation fields. Archive of Applied Mechanics 90 (2):291–304. doi:10.1007/s00419-019-01609-x.
  • Feng, R., E. Zhang, and M. Dong. 2021. Jib vibration and payload swing of tower cranes in the case of trolley motion. Arabian Journal for Science and Engineering 46 (12):12179–91. doi:10.1007/s13369-021-05804-3.
  • Gao, H., W. He, C. Zhou, and C. Sun. 2019. Neural network control of a two-link flexible robotic manipulator using assumed mode method. IEEE Transactions on Industrial Informatics 15 (2):755–65. doi:10.1109/TII.2018.2818120.
  • Grobbelaar-Van Dalsen, M. 2012. The role of magnetic fields in the strong stabilization of a hybrid magneto-elastic structure. Mathematical Methods in the Applied Sciences 35 (2):228–37. doi:10.1002/mma.1560.
  • Gu, H., G. Song, and H. Malki. 2008. Chattering-free fuzzy adaptive robust sliding-mode vibration control of a smart flexible beam. Smart Materials and Structures 17 (3):035007. doi:10.1088/0964-1726/17/3/035007.
  • Hou, H., and Q. Zhang. 2018. Novel sliding mode control for multi‐input–multi‐output discrete‐time system with disturbance. International Journal of Robust and Nonlinear Control 28 (8):3033–55. doi:10.1002/rnc.4064.
  • Korayem, M. H., and S. Dehkordi. 2019. Dynamic modeling of flexible cooperative mobile manipulator with revolute-prismatic joints for the purpose of moving common object with closed kinematic chain using the recursive Gibbs-Appell formulation. Mechanism and Machine Theory 137:254–79. doi:10.1016/j.mechmachtheory.2019.03.026.
  • Korayem, M. H., S. F. Dehkordi, and O. Mehrjooee. 2022. Nonlinear analysis of open-chain flexible manipulator with time-dependent structure. Advances in Space Research 69 (2):1027–49. doi:10.1016/j.asr.2021.10.037.
  • Krysko, A. V., J. Awrejcewicz, M. V. Zhigalov, S. P. Pavlov, and V. A. Krysko. 2017a. Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1. Governing equations and static analysis of flexible beams. International Journal of Non-Linear Mechanics 93:96–105. doi:10.1016/j.ijnonlinmec.2017.03.005.
  • Krysko, A. V., J. Awrejcewicz, M. V. Zhigalov, S. P. Pavlov, and V. A. Krysko. 2017b. Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 2. Chaotic dynamics of flexible beams. International Journal of Non-Linear Mechanics 93:106–21. doi:10.1016/j.ijnonlinmec.2017.03.006.
  • Lee, H. 2004. A new trajectory control of a flexible-link robot based on a distributed-parameter dynamic model. International Journal of Control 77 (6):546–53. doi:10.1080/00207170410001695656.
  • Mantari, J., and J. Yarasca. 2015. A simple and accurate generalized shear deformation theory for beams. Composite Structures 134:593–601. doi:10.1016/j.compstruct.2015.08.073.
  • Marques, F., P. Flores, J. Claro, and H. Lankarani. 2016. A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dynamics 86 (3):1407–43. doi:10.1007/s11071-016-2999-3.
  • Meng, H., F. Lien, E. Yee, and J. Shen. 2020. Modelling of anisotropic beam for rotating composite wind turbine blade by using finite-difference time-domain (FDTD) method. Renewable Energy.162:2361–79. doi:10.1016/j.renene.2020.10.007.
  • Pagani, A., and E. Carrera. 2020. Coupling three‐dimensional peridynamics and high‐order one‐dimensional finite elements based on local elasticity for the linear static analysis of solid beams and thin‐walled reinforced structures. International Journal for Numerical Methods in Engineering 121 (22):5066–81. doi:10.1002/nme.6510.
  • Peng, J., J. Huang, and W. Singhose. 2019. Payload twisting dynamics and oscillation suppression of tower cranes during slewing motions. Nonlinear Dynamics 98 (2):1041–8. doi:10.1007/s11071-019-05247-4.
  • Shafei, A. M., and M. M. Riahi. 2022. The effects of mode shapes on the temporal response of flexible closed-loop linkages under the impulse excitation. Mechanical Systems and Signal Processing 178 (2):109256. doi:10.1016/j.ymssp.2022.109256.
  • Shang, D., X. Li, M. Yin, F. Li, and B. Wen. 2022a. Rotation angle control strategy for telescopic flexible manipulator based on a combination of fuzzy adjustment and RBF neural network. Chinese Journal of Mechanical Engineering 35 (1):53. doi:10.1186/s10033-022-00723-2.
  • Shang, D., X. Li, M. Yin, and F. Li. 2022b. Dynamic modeling and control for dual-flexible servo system considering two-dimensional deformation based on neural network compensation. Mechanism and Machine Theory 175 (none):104954. doi:10.1016/j.mechmachtheory.2022.104954.
  • Shang, D., X. Li, M. Yin, and F. Li. 2022c. Vibration suppression method based on PI fuzzy controller containing disturbance observe for dual-flexible manipulator with an axially translating arm. International Journal of Control, Automation and Systems 20 (5):1682–94. doi:10.1007/s12555-021-0145-6.
  • Shang, D., X. Li, M. Yin, and F. Li. 2022d. Dynamic modeling and fuzzy compensation sliding mode control for flexible manipulator servo system. Applied Mathematical Modelling 107:530–56. doi:10.1016/j.apm.2022.02.035.
  • Sharifnia, M., and A. Akbarzadeh. 2016. A constrained assumed modes method for solution of a new dynamic equation for an axially moving beam. Computers & Mathematics with Applications 72 (9):2167–80. doi:10.1016/j.camwa.2016.08.018.
  • Song, G., and H. Gu. 2007. Active vibration suppression of a smart flexible beam using a sliding mode based controller. Journal of Vibration and Control 13 (8):1095–107. doi:10.1177/1077546307078752.
  • Tang, Y., Q. Tian, and H. Hu. 2022. Efficient modeling and order reduction of new 3D beam elements with warping via absolute nodal coordinate formulation. Nonlinear Dynamics 109 (4):2319–54. doi:10.1007/s11071-022-07547-8.
  • Wang, J., A. Zhai, F. Xu, H. Zhang, and G. Lu. 2020. Dual feedforward neural networks based synchronized sliding mode controller for cooperative manipulator system under variable load and uncertaintie. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234 (19):3859–72. doi:10.1177/0954406220916484.
  • Yang, Z., X. Li, R. Chen, D. Shang, J. Xu, and H. Yang. 2022. Dynamic performance analysis of the variable stiffness actuator considering gap and friction characteristics based on two-inertia-system. Mechanism and Machine Theory 168:104584. doi:10.1016/j.mechmachtheory.2021.104584.
  • Zhao, X., H. Yang, W. Xia, and X. Wang. 2017. Adaptive fuzzy hierarchical sliding-mode control for a class of MIMO nonlinear time-delay systems with input saturation. IEEE Transactions on Fuzzy Systems 25 (5):1062–77. doi:10.1109/TFUZZ.2016.2594273.
  • Zhao, Z., X. He, and C. K. Ahn. 2021. Boundary disturbance observer-based control of a vibrating single-link flexible manipulator. IEEE Transactions on Systems, Man, and Cybernetics: Systems 51 (4):2382–90. doi:10.1109/TSMC.2019.2912900.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.