195
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Active control of free and forced vibration of a rotating FG cylindrical shell via FG piezoelectric patches

, , &
Pages 3900-3924 | Received 11 Nov 2022, Accepted 03 May 2023, Published online: 21 May 2023

References

  • Arefi, M. 2015. The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers. Smart Structures and Systems 15 (5):1345–62. doi:10.12989/sss.2015.15.5.1345.
  • Arefi, M., R. Karroubi, and M. Irani-Rahaghi. 2016. Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer. Applied Mathematics and Mechanics 37 (7):821–34. doi:10.1007/s10483-016-2098-9.
  • Chopra, I., and J. Sirohi. 2013. Smart structures theory. Vol. 35. Cambridge: Cambridge University Press.
  • Dai, Q., Q. Cao, and Y. Chen. 2018. Frequency analysis of rotating truncated conical shells using the Haar wavelet method. Applied Mathematical Modelling 57:603–13. doi:10.1016/j.apm.2017.06.025.
  • Dang, X.-H., V.-L. Nguyen, M.-T. Tran, and B.-P. Nguyen Thi. 2020. Free vibration characteristics of rotating functionally graded porous circular cylindrical shells with different boundary conditions. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 46 (1):167–83. doi:10.1007/s40997-020-00413-1.
  • Deü, J.-F., A. C. Galucio, and R. Ohayon. 2008. Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Computers & Structures 86 (3–5):258–65. doi:10.1016/j.compstruc.2007.01.028.
  • Dong, Y., H. Hu, and L. Wang. 2022. A comprehensive study on the coupled multi-mode vibrations of cylindrical shells. Mechanical Systems and Signal Processing 169:108730. doi:10.1016/j.ymssp.2021.108730.
  • Dong, Y., X. Li, K. Gao, Y. Li, and J. Yang. 2020. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dynamics 99 (2):981–1000. doi:10.1007/s11071-019-05297-8.
  • Dong, Y., Y. Li, X. Li, and J. Yang. 2020. Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Applied Mathematical Modelling 82:252–70. doi:10.1016/j.apm.2020.01.054.
  • Fatemi Moghaddam, S. M., and H. Ahmadi. 2020. Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator. Thin-Walled Structures 151:106642. doi:10.1016/j.tws.2020.106642.
  • Golpayegani, I. F., and A. A. Jafari. 2017. Critical speed analysis of bi-layered rotating cylindrical shells made of functionally graded materials. Journal of Materials and Environmental Science 8 (6):2112–2121.
  • Heidari, Y., M. Irani Rahaghi, and M. Arefi. 2021. Free vibration analysis of a porous rotor integrated with regular patterns of circumferentially distributed functionally graded piezoelectric patches on inner and outer surfaces. Journal of Intelligent Material Systems and Structures 32 (1):82–103. doi:10.1177/1045389X20948608.
  • Hosseini-Hashemi, S., M. R. Ilkhani, and M. Fadaee. 2013. Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell. International Journal of Mechanical Sciences 76:9–20. doi:10.1016/j.ijmecsci.2013.08.005.
  • Hussain, M., M. N. Naeem, and M. R. Isvandzibaei. 2018. Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (24):4564–77. doi:10.1177/0954406217753459.
  • Hussain, M., M. N. Naeem, A. Shahzad, M.-G. He, and S. Habib. 2018. Vibrations of rotating cylindrical shells with functionally graded material using wave propagation approach. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (23):4342–56. doi:10.1177/0954406218802320.
  • Iqbal, Z., M. N. Naeem, N. Sultana, S. H. Arshad, and A. G. Shah. 2009. Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach. Applied Mathematics and Mechanics 30 (11):1393–404. doi:10.1007/s10483-009-1105-x.
  • Jafari Niasar, M., M. Irani Rahaghi, and A. A. Jafari. 2022. Optimal location of FG actuator/sensor patches on an FG rotating conical shell for active control of vibration. Acta Mechanica 233 (12):5335–57. doi:10.1007/s00707-022-03368-3.
  • Jamshidi, R., and A. A. Jafari. 2021. Conical shell vibration control with distributed piezoelectric sensor and actuator layer. Composite Structures 256:113107. doi:10.1016/j.compstruct.2020.113107.
  • Karroubi, R., and M. Irani-Rahaghi. 2019. Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: Free vibration analysis. Applied Mathematics and Mechanics 40 (4):563–78. doi:10.1007/s10483-019-2469-8.
  • Kim, H. S., J. W. Sohn, and S.-B. Choi. 2011. Vibration control of a cylindrical shell structure using macro fiber composite actuators. Mechanics Based Design of Structures and Machines 39 (4):491–506. doi:10.1080/15397734.2011.577691.
  • Kreyszig, E. 2009. Advanced engineering mathematics. 10th ed. NJ: Wiley.
  • Kumar, A., and M. C. Ray. 2014. Control of smart rotating laminated composite truncated conical shell using ACLD treatment. International Journal of Mechanical Sciences 89:123–41. doi:10.1016/j.ijmecsci.2014.08.026.
  • Li, H., S. D. Hu, H. S. Tzou, and Z. B. Chen. 2012. Optimal vibration control of conical shells with collocated helical sensor/actuator pairs. Journal of Theoretical and Applied Mechanics 50:769–84.
  • Li, H., K.-Y. Lam, and T.-Y. Ng. 2005. Rotating shell dynamics. Amsterdam: Elsevier Science.
  • Li, F.-M., Z.-G. Song, and Z.-B. Chen. 2012. Active vibration control of conical shells using piezoelectric materials. Journal of Vibration and Control 18 (14):2234–56. doi:10.1177/1077546311429055.
  • Loghmani, A., M. Danesh, M. Keshmiri, and M. M. Savadi. 2015. Theoretical and experimental study of active vibration control of a cylindrical shell using piezoelectric disks. Journal of Low Frequency Noise, Vibration and Active Control 34 (3):269–87. doi:10.1260/0263-0923.34.3.269.
  • Loy, C. T., K. Y. Lam, and J. N. Reddy. 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences 41 (3):309–24. doi:10.1016/S0020-7403(98)00054-X.
  • Malekzadeh, P., and Y. Heydarpour. 2012. Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment. Composite Structures 94 (9):2971–81. doi:10.1016/j.compstruct.2012.04.011.
  • Mehralian, F., and Y. T. Beni. 2018. Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (1):1–15. doi:10.1007/s40430-017-0938-y.
  • Mohammadrezazadeh, S., and A. A. Jafari. 2019. The influences of magnetostrictive layers on active vibration control of laminated composite rotating cylindrical shells based on first-order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (13):4606–19. doi:10.1177/0954406219830439.
  • Ogata, K. 2010. Modern control engineering. Vol. 5. Upper Saddle River, NJ: Prentice Hall.
  • Shahbaztabar, A., A. Izadi, M. Sadeghian, and M. Kazemi. 2019. Free vibration analysis of FGM circular cylindrical shells resting on the Pasternak foundation and partially in contact with stationary fluid. Applied Acoustics 153:87–101. doi:10.1016/j.apacoust.2019.04.012.
  • Song, Z. G., L. W. Zhang, and K. M. Liew. 2016. Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches. Composite Structures 158:92–100. doi:10.1016/j.compstruct.2016.09.031.
  • Sun, S., D. Cao, and S. Chu. 2013. Free vibration analysis of thin rotating cylindrical shells using wave propagation approach. Archive of Applied Mechanics 83 (4):521–31. doi:10.1007/s00419-012-0701-x.
  • Sun, S., L. Liu, and D. Cao. 2018. Nonlinear travelling wave vibrations of a rotating thin cylindrical shell. Journal of Sound and Vibration 431:122–36. doi:10.1016/j.jsv.2018.05.042.
  • Sun, L., W. Li, Y. Wu, and Q. Lan. 2017. Active vibration control of a conical shell using piezoelectric ceramics. Journal of Low Frequency Noise, Vibration and Active Control 36 (4):366–75. doi:10.1177/1461348417744304.
  • Tang, Q., C. Li, and B. Wen. 2016. Analysis on forced vibration of thin-wall cylindrical shell with nonlinear boundary condition. Shock and Vibration 2016:1–22. doi:10.1155/2016/8978932.
  • Wang, J., Y. Cao, and G. Lin. 2016. Vibration analysis of high-speed rotating conical shell with arbitrary boundary conditions. Proceedings of Meetings on Acoustics 29: 065001.
  • Wang, Y., C. Feng, Z. Zhao, F. Lu, and J. Yang. 2018. Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout. Composite Structures 197:72–9. doi:10.1016/j.compstruct.2018.05.056.
  • Wang, Y., C. Feng, Z. Zhao, and J. Yang. 2018. Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL). Composite Structures 202:38–46. doi:10.1016/j.compstruct.2017.10.005.
  • Wang, Y. Q., Y. F. Liu, and T. H. Yang. 2019. Nonlinear thermo-electro-mechanical vibration of functionally graded piezoelectric nanoshells on Winkler–Pasternak foundations via nonlocal Donnell’s nonlinear shell theory. International Journal of Structural Stability and Dynamics 19 (9):1950100. doi:10.1142/S0219455419501001.
  • Yao, G., and F.-M. Li. 2014. The stability analysis and active control of a composite laminated open cylindrical shell in subsonic airflow. Journal of Intelligent Material Systems and Structures 25 (3):259–70. doi:10.1177/1045389X13491020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.