176
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Nonlocal strain gradient-based meshless collocation model for nonlinear dynamics of time-dependent actuated beam-type energy harvesters at nanoscale

, ORCID Icon, ORCID Icon, &
Pages 3974-4008 | Received 18 Mar 2023, Accepted 09 May 2023, Published online: 25 May 2023

References

  • Adhikari, J., R. Kumar, V. Narain, and S. C. Jain. 2023. Electromechanical study of graphene reinforced lead-free functionally graded tile for vibration energy harvesting. Journal of Intelligent Material Systems and Structures, 1045389X221121949 34 (7):861–76. doi:10.1177/1045389X221121949.
  • Al-Furjan, M. S. H., M. A. Oyarhossein, M. Habibi, H. Safarpour, D. Won Jung, and A. Tounsi. 2021. On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel. Composite Structures 255:112947. doi:10.1016/j.compstruct.2020.112947.
  • Alshenawy, R., B. Safaei, S. Sahmani, Y. Elmoghazy, A. Al-Alwan, and M. A. Nuwairan. 2022. Buckling mode transition in nonlinear strain gradient-based stability behavior of axial-thermal-electrical loaded FG piezoelectric cylindrical panels at microscale. Engineering Analysis with Boundary Elements 141:36–64. doi:10.1016/j.enganabound.2022.04.010.
  • Alshenawy, R., S. Sahmani, B. Safaei, Y. Elmoghazy, A. Al-Alwan, and M. A. Nuwairan. 2023a. Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM strain gradient formulations. Applied Mathematics and Computation 439:127623. doi:10.1016/j.amc.2022.127623.
  • Alshenawy, R., S. Sahmani, B. Safaei, Y. Elmoghazy, A. Al-Alwan, and M. A. Nuwairan. 2023b. Surface stress effect on nonlinear dynamical performance of nanobeam-type piezoelectric energy harvesters via meshless collocation technique. Engineering Analysis with Boundary Elements 152:104–19. doi:10.1016/j.enganabound.2023.04.003.
  • Alshenawy, R., S. Sahmani, B. Safaei, Y. Elmoghazy, A. Al-Alwan, and M. Sobhy. 2023. Nonlinear dynamical performance of microsize piezoelectric bridge-type energy harvesters based upon strain gradient-based meshless collocation approach. Engineering Analysis with Boundary Elements 151:199–215. doi:10.1016/j.enganabound.2023.03.002.
  • Ansari, R., R. Gholami, M. F. Shojaei, V. Mohammadi, and S. Sahmani. 2014. Surface stress effect on the pull-in instability of circular nanoplates. Acta Astronautica 102:140–50. doi:10.1016/j.actaastro.2014.05.020.
  • Auciello, O., and D. M. Aslam. 2021. Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies. Journal of Materials Science 56 (12):7171–230. doi:10.1007/s10853-020-05699-9.
  • Bi, R., Z. Wang, E. S. Lori, and N. B. Osman. 2021. Wave propagation analysis of the higher-order nanopanel with laminated composite core and magneto-electro-elastic face sheets via nonlocal strain gradient theory. Waves in Random and Complex Media :1–23. doi:10.1080/17455030.2021.1938285.
  • Bodaghi, M., and M. Shakeri. 2012. An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads. Composite Structures 94 (5):1721–35. doi:10.1016/j.compstruct.2012.01.009.
  • Cao, Y., and H. Huang. 2023. Performance optimization and broadband design of piezoelectric energy harvesters based on isogeometric topology optimization framework. European Journal of Mechanics - A/Solids 97:104800. doi:10.1016/j.euromechsol.2022.104800.
  • Chu, J., Y. Wang, S. Sahmani, and B. Safaei. 2022. Nonlinear Large-Amplitude Oscillations of PFG Composite Rectangular Microplates Based Upon the Modified Strain Gradient Elasticity Theory. International Journal of Structural Stability and Dynamics 22 (06):68. doi:10.1142/S0219455422500687.
  • Chu, L., Y. Li, and G. Dui. 2020. Nonlinear analysis of functionally graded flexoelectric nanoscale energy harvesters. International Journal of Mechanical Sciences 167:105282. doi:10.1016/j.ijmecsci.2019.105282.
  • Costa de Oliveira, F. A., D. W. de Lima Monteiro, and D. M. Colombo. 2021. Design, modeling, characterization and analysis of a low frequency micro-fabricated piezoelectric cantilever for vibration sensing and energy harvesting applications. Sensors and Actuators A: Physical 326:112709. doi:10.1016/j.sna.2021.112709.
  • Deng, H.-T., Y.-L. Wang, D.-L. Wen, X.-R. Zhang, P. Huang, and X.-S. Zhang. 2022. Progress of biomechanical energy harvesters for wearable electronic applications. Journal of Micromechanics and Microengineering 32 (8):083001. doi:10.1088/1361-6439/ac7a8f.
  • Egbe, K.-J I., A. Matin Nazar, and P. Jiao. 2022. Piezoelectric-triboelectric-electromagnetic hybrid rotational energy harvesters (H-REH). International Journal of Mechanical Sciences 235:107722. doi:10.1016/j.ijmecsci.2022.107722.
  • Eringen, A. C. 1972. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science 10 (5):425–35. doi:10.1016/0020-7225(72)90050-X.
  • Esen, I., and R. Özmen. 2022. Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity. Composite Structures 296:115878. doi:10.1016/j.compstruct.2022.115878.
  • Fan, F., X. Cai, S. Sahmani, and B. Safaei. 2021. Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Composite Structures 262:113604. doi:10.1016/j.compstruct.2021.113604.
  • Fan, F., B. Lei, S. Sahmani, and B. Safaei. 2020. On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin-Walled Structures 154:106841. doi:10.1016/j.tws.2020.106841.
  • Fan, F., B. Safaei, and S. Sahmani. 2021. Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis. Thin-Walled Structures 159:107231. doi:10.1016/j.tws.2020.107231.
  • Fan, F., B. Safaei, and S. Sahmani. 2023. Reply to “A comment on buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis” [Thin-Walled Struct. 184 (2023) 110505]. Thin-Walled Structures 186:110715. doi:10.1016/j.tws.2023.110715.
  • Fan, F., S. Sahmani, and B. Safaei. 2021. Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation. Composite Structures 255:112969. doi:10.1016/j.compstruct.2020.112969.
  • Fan, F., Y. Xu, S. Sahmani, and B. Safaei. 2020. Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Computer Methods in Applied Mechanics and Engineering 372:113400. https://linkinghub.elsevier.com/retrieve/pii/S0045782520305855. doi:10.1016/j.cma.2020.113400.
  • Fattahi, A. M., S. Sahmani, and N. A. Ahmed. 2020. Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mechanics Based Design of Structures and Machines 48 (4):403–32. doi:10.1080/15397734.2019.1624176.
  • Gao, W., Y. Liu, Z. Qin, and F. Chu. 2022. Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment. International Journal of Applied Mechanics 14 (07):2250071. doi:10.1142/S1758825122500715.
  • Ghasemi, H., H. S. Park, and T. Rabczuk. 2017. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering 313:239–58. doi:10.1016/j.cma.2016.09.029.
  • Ghasemi, H., H. S. Park, and T. Rabczuk. 2018. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering 332:47–62. doi:10.1016/j.cma.2017.12.005.
  • Gu, B., and T. He. 2021. Investigation of thermoelastic wave propagation in Euler–Bernoulli beam via nonlocal strain gradient elasticity and G-N theory. Journal of Vibration Engineering & Technologies 9 (5):715–24. doi:10.1007/s42417-020-00277-4.
  • Hao-Nan, L., L. Cheng, S. Ji-Ping, and Y. Lin-Quan. 2021. Vibration analysis of rotating functionally graded piezoelectric nanobeams based on the nonlocal elasticity theory. Journal of Vibration Engineering & Technologies 9 (6):1155–73. doi:10.1007/s42417-021-00288-9.
  • Heshmati, M., and Y. Amini. 2019. A comprehensive study on the functionally graded piezoelectric energy harvesting from vibrations of a graded beam under travelling multi-oscillators. Applied Mathematical Modelling 66:344–61. doi:10.1016/j.apm.2018.09.002.
  • Hurdoganoglu, D., B. Safaei, J. Cheng, Z. Qin, and S. Sahmani. 2022. A comprehensive review on the novel principles, development and applications of triboelectric nanogenerators. Applied Mechanics Reviews :1–72. doi:10.1115/1.4056391.
  • Jena, S. K., S. Chakraverty, V. Mahesh, and D. Harursampath. 2022. Application of Haar wavelet discretization and differential quadrature methods for free vibration of functionally graded micro-beam with porosity using modified couple stress theory. Engineering Analysis with Boundary Elements 140:167–85. doi:10.1016/j.enganabound.2022.04.009.
  • Jeong, C. K., C. Baek, A. I. Kingon, K.-I. Park, and S.-H. Kim. 2018. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 14 (19):1704022. doi:10.1002/smll.201704022.
  • Jiang, Y., L. Li, and Y. Hu. 2023. A physically-based nonlocal strain gradient theory for crosslinked polymers. International Journal of Mechanical Sciences 245:108094. doi:10.1016/j.ijmecsci.2022.108094.
  • Yang, J. 2009. Special Topics in the Theory of Piezoelectricity. In Special Topics in the Theory of Piezoelectricity. Springer New York. doi:10.1007/978-0-387-89498-0.
  • Kamarian, S., M. Salim, R. Dimitri, and F. Tornabene. 2016. Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes. International Journal of Mechanical Sciences 108-109:157–65. doi:10.1016/j.ijmecsci.2016.02.006.
  • Karamanli, A., and T. P. Vo. 2020. Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Composite Structures 246:112401. doi:10.1016/j.compstruct.2020.112401.
  • Ke, L. L., Y. S. Wang, and Z. D. Wang. 2012. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Composite Structures 94 (6):2038–47. doi:10.1016/j.compstruct.2012.01.023.
  • Li, C., X. Tian, and T. He. 2021. An investigation into size-dependent dynamic thermo-electromechanical response of piezoelectric-laminated sandwich smart nanocomposites. International Journal of Energy Research 45 (5):7235–55. doi:10.1002/er.6308.
  • Li, H., J. Liu, K. Li, and Y. Liu. 2021. A review of recent studies on piezoelectric pumps and their applications. Mechanical Systems and Signal Processing 151:107393. doi:10.1016/j.ymssp.2020.107393.
  • Li, L., R. Lin, and T. Y. Ng. 2020. A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics. Applied Mathematical Modelling 84:116–36. doi:10.1016/j.apm.2020.03.048.
  • Li, L., H. Tang, and Y. Hu. 2018. The effect of thickness on the mechanics of nanobeams. International Journal of Engineering Science 123:81–91. doi:10.1016/j.ijengsci.2017.11.021.
  • Liang, H., G. Hao, and O. Z. Olszewski. 2021. A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms. Sensors and Actuators A: Physical 331:112743. doi:10.1016/j.sna.2021.112743.
  • Lim, C. W., G. Zhang, and J. N. Reddy. 2015. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids 78:298–313. doi:10.1016/j.jmps.2015.02.001.
  • Liu, H., B. Safaei, and S. Sahmani. 2022. Combined axial and lateral stability behavior of random checkerboard reinforced cylindrical microshells via a couple stress-based moving Kriging meshfree model. Archives of Civil and Mechanical Engineering 22 (1):15. doi:10.1007/s43452-021-00338-9.
  • Liu, Q., X.-X. Wang, W.-Z. Song, H.-J. Qiu, J. Zhang, Z. Fan, M. Yu, and Y.-Z. Long. 2020. Wireless Single-Electrode Self-Powered Piezoelectric Sensor for Monitoring. ACS Applied Materials & Interfaces 12 (7):8288–95. doi:10.1021/acsami.9b21392.
  • Liu, Y., Z. Qin, and F. Chu. 2021. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. International Journal of Mechanical Sciences 201:106474. doi:10.1016/j.ijmecsci.2021.106474.
  • Lu, H., J. Zhou, S. Sahmani, and B. Safaei. 2021. Nonlinear stability of axially compressed couple stress-based composite micropanels reinforced with random checkerboard nanofillers. Physica Scripta 96 (12):125703. doi:10.1088/1402-4896/ac1d7f.
  • Ma, X., S. Sahmani, and B. Safaei. 2022. Quasi-3D large deflection nonlinear analysis of isogeometric FGM microplates with variable thickness via nonlocal stress–strain gradient elasticity. Engineering with Computers 38 (4):3691–704. doi:10.1007/s00366-021-01390-y.
  • Malikan, M., M. Krasheninnikov, and V. A. Eremeyev. 2020. Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. International Journal of Engineering Science 148:103210. doi:10.1016/j.ijengsci.2019.103210.
  • Mao, J. J., L. J. Guo, and W. Zhang. 2021. Vibration and frequency analysis of edge-cracked functionally graded graphene reinforced composite beam with piezoelectric actuators. Engineering with Computers 1:1–20. doi:10.1007/S00366-021-01546-W/FIGURES/12.
  • Marinković, D., and G. Rama. 2017. Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures. Composites Part B: Engineering 125:144–56. doi:10.1016/j.compositesb.2017.05.061.
  • Melaibari, A., A. A. Abdelrahman, M. A. Hamed, A. W. Abdalla, and M. A. Eltaher. 2022. Dynamic Analysis of a Piezoelectrically Layered Perforated Nonlocal Strain Gradient Nanobeam with Flexoelectricity. In Mathematics 10Issue (15):2614. doi:10.3390/math10152614.
  • Nguyen, B. H., S. S. Nanthakumar, X. Zhuang, P. Wriggers, X. Jiang, and T. Rabczuk. 2018. Dynamic flexoelectric effect on piezoelectric nanostructures. European Journal of Mechanics - A/Solids 71:404–9. doi:10.1016/j.euromechsol.2018.06.002.
  • Nguyen, L. B., C. H. Thai, N. Duong-Nguyen, and H. Nguyen-Xuan. 2022. A size-dependent isogeometric approach for vibration analysis of FG piezoelectric porous microplates using modified strain gradient theory. Engineering with Computers 38 (S5):4415–35. doi:10.1007/S00366-021-01468-7/FIGURES/8.
  • Nguyen, N. V., and J. Lee. 2021. On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. International Journal of Mechanical Sciences 197:106310. doi:10.1016/j.ijmecsci.2021.106310.
  • Park, K.-I., C. K. Jeong, N. K. Kim, and K. J. Lee. 2016. Stretchable piezoelectric nanocomposite generator. Nano Convergence. 3 (1):12. doi:10.1186/s40580-016-0072-z.
  • Pei, H., Y. Xie, Y. Xiong, Q. Lv, and Y. Chen. 2021. A novel polarization-free 3D printing strategy for fabrication of poly (Vinylidene fluoride) based nanocomposite piezoelectric energy harvester. Composites Part B: Engineering 225:109312. doi:10.1016/j.compositesb.2021.109312.
  • Pusty, M., and P. M. Shirage. 2022. Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy. Journal of Alloys and Compounds 904:164060. doi:10.1016/j.jallcom.2022.164060.
  • Qiu, J., S. Sahmani, and B. Safaei. 2023. On the NURBS-based isogeometric analysis for couple stress-based nonlinear instability of PFGM microplates. Mechanics Based Design of Structures and Machines 51 (2):816–40. doi:10.1080/15397734.2020.1853567.
  • Rabczuk, T., H. Ren, and X. Zhuang. 2019. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua 59 (1):31–55. doi:10.32604/cmc.2019.04567.
  • Rao, R., S. Sahmani, and B. Safaei. 2021. Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Archives of Civil and Mechanical Engineering 21 (3):1–17. doi:10.1007/S43452-021-00250-2/TABLES/4.
  • Rao, R., Z. Ye, Z. Yang, S. Sahmani, and B. Safaei. 2022. Nonlinear buckling mode transition analysis of axial–thermal–electrical-loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors. Archives of Civil and Mechanical Engineering 22 (3):1–21. doi:10.1007/S43452-022-00437-1/TABLES/7.
  • Ren, H., X. Zhuang, and T. Rabczuk. 2020. A nonlocal operator method for solving partial differential equations. Computer Methods in Applied Mechanics and Engineering 358:112621. doi:10.1016/j.cma.2019.112621.
  • Riaz, A., M. R. Sarker, M. H. Saad, and R. Mohamed. 2021. Review on comparison of different energy storage technologies used in micro-energy harvesting, WSNs, low-cost microelectronic devices: Challenges and recommendations. Sensors 21 (15):5041. doi:10.3390/s21155041.
  • Saboori Khorasani, V., K. K. Żur, J. Kim, and J. N. Reddy. 2022. On the dynamics and stability of size-dependent symmetric FGM plates with electro-elastic coupling using meshless local Petrov-Galerkin method. Composite Structures 298:115993. doi:10.1016/j.compstruct.2022.115993.
  • Safaei, B., S. Sahmani, and H. Tofighi Asl. 2023. Quasi-3D nonlinear flexural response of isogeometric functionally graded CNT-reinforced plates with various shapes with variable thicknesses. Mechanics Based Design of Structures and Machines 51 (5):2957–81. doi:10.1080/15397734.2021.1999264.
  • Sahmani, S., and M. M. Aghdam. 2017. Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. International Journal of Mechanical Sciences 131-132:95–106. doi:10.1016/j.ijmecsci.2017.06.052.
  • Sahmani, S., A. M. Fattahi, and N. A. Ahmed. 2020. Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions. International Journal of Mechanical Sciences 165:105203. doi:10.1016/j.ijmecsci.2019.105203.
  • Sahmani, S., A. Khandan, S. Saber-Samandari, and M. Mohammadi Aghdam. 2020. Effect of magnetite nanoparticles on the biological and mechanical properties of hydroxyapatite porous scaffolds coated with ibuprofen drug. Materials Science & Engineering. C, Materials for Biological Applications 111 (August 2018):110835. doi:10.1016/j.msec.2020.110835.
  • Sahmani, S., S. Saber-Samandari, A. Khandan, and M. M. Aghdam. 2019. Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: Fabrication, characterization and simulation. Journal of the Mechanical Behavior of Biomedical Materials 95 (vember 2018):76–88. doi:10.1016/j.jmbbm.2019.03.014.
  • Sahmani, S., and B. Safaei. 2021a. Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect. Applied Mathematical Modelling 89:1792–813. doi:10.1016/j.apm.2020.08.039.
  • Sahmani, S., and B. Safaei. 2021b. Microstructural-dependent nonlinear stability analysis of random checkerboard reinforced composite micropanels via moving Kriging meshfree approach. The European Physical Journal Plus 136 (8):1–31. doi:10.1140/epjp/s13360-021-01706-3.
  • Sahmani, S., and B. Safaei. 2022. Nonlinear three-dimensional oscillations of probabilistic reinforced nanocomposite shells at microscale via modified strain gradient meshfree formulations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science: 095440622211421. doi:10.1177/09544062221142144.
  • Sahmani, S., B. Safaei, and F. Aldakheel. 2021. Surface elastic-based nonlinear bending analysis of functionally graded nanoplates with variable thickness. The European Physical Journal Plus 136 (6):1–28. doi:10.1140/epjp/s13360-021-01667-7.
  • Sahmani, S., M. Shahali, A. Khandan, S. Saber-Samandari, and M. M. Aghdam. 2018. Analytical and experimental analyses for mechanical and biological characteristics of novel nanoclay bio-nanocomposite scaffolds fabricated via space holder technique. Applied Clay Science 165:112–23. doi:10.1016/j.clay.2018.08.013.
  • Samaniego, E., C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk. 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362:112790. doi:10.1016/j.cma.2019.112790.
  • Sarker, M. R., M. H. Saad, J. L. Olazagoitia, and J. Vinolas. 2021. Review of power converter impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications. Electronics 10(9):1108. doi:10.3390/electronics10091108.
  • Sarker, M. R., M. H. Saad, A. Riaz, M. S. H. Lipu, J. L. Olazagoitia, and H. Arshad. 2022. A Bibliometric Analysis of Low-Cost Piezoelectric Micro-Energy Harvesting Systems from Ambient Energy Sources: Current Trends, Issues and Suggestions. In Micromachines 13Issue (6):975. doi:10.3390/mi13060975.
  • Shi, D. L., X. Q. Feng, Y. Y. Huang, K. C. Hwang, and H. Gao. 2004. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. Journal of Engineering Materials and Technology 126 (3):250–7. doi:10.1115/1.1751182.
  • Siddiqui, S., D.-I. Kim, L. T. Duy, M. T. Nguyen, S. Muhammad, W.-S. Yoon, and N.-E. Lee. 2015. High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy. 15:177–85. doi:10.1016/j.nanoen.2015.04.030.
  • Su, L., S. Sahmani, and B. Safaei. 2022. Modified strain gradient-based nonlinear building sustainability of porous functionally graded composite microplates with and without cutouts using IGA. Engineering with Computers doi:10.1007/s00366-022-01606-9.
  • Sun, J.-H., Z.-D. Zhou, S. Sahmani, and B. Safaei. 2021. Microstructural size dependency in nonlinear lateral stability of random reinforced microshells via meshfree-based applied mathematical modeling. International Journal of Structural Stability and Dynamics 21 (12):2150164. doi:10.1142/S0219455421501649.
  • Sun, J., S. Sahmani, and B. Safaei. 2023. Nonlinear Dynamical Instability Characteristics of FG Piezoelectric Microshells Incorporating Nonlocality and Strain Gradient Size Dependencies. International Journal of Structural Stability and Dynamics 23 (07):2350074. doi:10.1142/S0219455423500748.
  • Tang, P., Y. Sun, S. Sahmani, and D. M. Madyira. 2021. Isogeometric small-scale-dependent nonlinear oscillations of quasi-3D FG inhomogeneous arbitrary-shaped microplates with variable thickness. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (7):1–16. doi:10.1007/S40430-021-03057-7/FIGURES/8.
  • Tzou, H. S., and C. I. Tseng. 1990. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach. Journal of Sound and Vibration 138 (1):17–34. doi:10.1016/0022-460X(90)90701-Z.
  • Wang, C., T. Yu, G. Shao, and T. Q. Bui. 2021. Multi-objective isogeometric integrated optimization for shape control of piezoelectric functionally graded plates. Computer Methods in Applied Mechanics and Engineering 377:113698. doi:10.1016/j.cma.2021.113698.
  • Wang, J., B. Ma, J. Gao, H. Liu, B. Safaei, and S. Sahmani. 2022. Nonlinear stability characteristics of porous graded composite microplates including various microstructural-dependent strain gradient tensors. International Journal of Applied Mechanics 14 (01):2150129. doi:10.1142/S1758825121501295.
  • Wang, L., L. Zhao, G. Luo, Y. Zhao, P. Yang, Z. Jiang, and R. Maeda. 2020. System level design of wireless sensor node powered by piezoelectric vibration energy harvesting. Sensors and Actuators A: Physical 310:112039. doi:10.1016/j.sna.2020.112039.
  • Wang, P., P. Yuan, S. Sahmani, and B. Safaei. 2021. Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA. Thin-Walled Structures 166:108101. doi:10.1016/j.tws.2021.108101.
  • Wang, Y., X. Guo, L. H. Li, J. Zhang, G. K. Li, A. Zavabeti, and Y. Li. 2022. Enhanced piezoelectric properties enabled by engineered low-dimensional nanomaterials. ACS Applied Nano Materials 5 (9):12126–42. doi:10.1021/acsanm.2c01871.
  • Wu, N., B. Bao, and Q. Wang. 2021. Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Engineering Structures 235:112068. doi:10.1016/j.engstruct.2021.112068.
  • Xia, P., and K. Wei. 2012. Shear locking analysis of plate bending by using meshless local radial point interpolation method. applied mechanics and materials 166-169:2867–70. doi:10.4028/www.scientific.net/amm.166-169.2867.
  • Xie, B., S. Sahmani, B. Safaei, and B. Xu. 2021. Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Engineering with Computers 37 (2):1611–34. doi:10.1007/s00366-019-00931-w.
  • Yang, Z., I. Barbaros, S. Sahmani, A. Abdussalam Nuhu, and B. Safaei. 2023. Size-dependent nonlinear thermomechanical in-plane stability of shallow arches at micro/nano-scale including nonlocal and couple stress tensors. Mechanics Based Design of Structures and Machines :1–23. doi:10.1080/15397734.2023.2200818.
  • Yang, Z., D. Hurdoganoglu, S. Sahmani, A. A. Nuhu, and B. Safaei. 2023. Nonlocal strain gradient-based nonlinear in-plane thermomechanical stability of FG multilayer micro/nano-arches. Archives of Civil and Mechanical Engineering 23 (2):90. doi:10.1007/s43452-023-00623-9.
  • Yang, Z., D. Hurdoganoglu, S. Sahmani, B. Safaei, and A. Liu. 2023. Surface stress size dependency in nonlinear thermomechanical in-plane stability characteristics of FG laminated curved nanobeams. Engineering Structures 284:115957. doi:10.1016/j.engstruct.2023.115957.
  • Yang, Z., H. Lu, S. Sahmani, and B. Safaei. 2021. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Archives of Civil and Mechanical Engineering 21 (3):1–19. doi:10.1007/S43452-021-00264-W/TABLES/5.
  • Yang, Z., B. Safaei, S. Sahmani, and Y. Zhang. 2022. A couple-stress-based moving Kriging meshfree shell model for axial postbuckling analysis of random checkerboard composite cylindrical microshells. Thin-Walled Structures 170 (10863):108631. doi:10.1016/j.tws.2021.108631.
  • Yuan, Y., K. Zhao, S. Sahmani, and B. Safaei. 2020. Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes. Applied Mathematics and Mechanics 41 (4):587–604. doi:10.1007/s10483-020-2600-6.
  • Yuan, Y., X. Zhao, Y. Zhao, S. Sahmani, and B. Safaei. 2021. Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Structures 159:107249. doi:10.1016/j.tws.2020.107249.
  • Yue, X.-G., S. Sahmani, H. Luo, and B. Safaei. 2022. Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams. Archives of Civil and Mechanical Engineering 23 (1):21. doi:10.1007/s43452-022-00548-9.
  • Yue, X.-G., S. Sahmani, and B. Safaei. 2023. Nonlocal couple stress-based quasi-3D nonlinear dynamics of agglomerated CNT-reinforced micro/nano-plates before and after bifurcation phenomenon. Physica Scripta 98 (3):035710. doi:10.1088/1402-4896/acb858.
  • Zhang, L., F. Zhang, Z. Qin, Q. Han, T. Wang, and F. Chu. 2022. Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring. Energy 238:121770. doi:10.1016/j.energy.2021.121770.
  • Zhang, X., W. Ye, S. Sahmani, and B. Safaei. 2023. Quasi-3D nonlinear primary resonance of randomly oriented CNT-reinforced micro/nano-beams incorporating nonlocal and couple stress tensors. Acta Mechanica :1–27. doi:10.1007/S00707-023-03554-X/FIGURES/5.
  • Zhang, Y., S. Sahmani, Z. Yang, and B. Safaei. 2022. Nonlocal and couple stress tensors in three-dimensional nonlinear dynamical stability behavior of microshells manufactured by smart materials. Acta Mechanica 233 (12):5377–401. doi:10.1007/S00707-022-03394-1/FIGURES/9.
  • Zhao, J., J. Wang, S. Sahmani, and B. Safaei. 2022. Probabilistic-based nonlinear stability analysis of randomly reinforced microshells under combined axial-lateral load using meshfree strain gradient formulations. Engineering Structures 262:114344. doi:10.1016/j.engstruct.2022.114344.
  • Zhuang, X., H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk. 2021. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics - A/Solids 87:104225. doi:10.1016/j.euromechsol.2021.104225.
  • Zhuang, X., S. S. Nanthakumar, and T. Rabczuk. 2020. A meshfree formulation for large deformation analysis of flexoelectric structures accounting for the surface effects. Engineering Analysis with Boundary Elements 120:153–65. doi:10.1016/j.enganabound.2020.07.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.