105
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Rapid evaluation of lateral-torsional buckling of European standard I-section cantilevers

ORCID Icon
Pages 4241-4259 | Received 05 Jan 2023, Accepted 03 Jun 2023, Published online: 15 Jun 2023

References

  • ABAQUS/CAE. 2022. Dassault systèmes.
  • Adany, S., and B. W. Schafer. 2014. Generalized constrained finite strip method for thin-walled members with arbitrary cross section: Primary modes. Thin-Walled Structures 84:150–69. doi:10.1016/j.tws.2014.06.001.
  • Anderson, J. M., and N. S. Trahair. 1972. Stability of monosymmetric beams and cantilevers. Journal of the Structural Division 98 (1):269–86. doi:10.1061/JSDEAG.0003114.
  • Andrade, A., and D. Camotim. 2004. Lateral-torsional buckling of prismatic and tapered thin-walled open beams: Assessing the influence of pre-buckling deflections. Steel and Composite Structures 4 (4):281–301. doi:10.12989/scs.2004.4.4.281.
  • Andrade, A., D. Camotim, and P. B. Dinis. 2007. Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA. Computers & Structures 85 (17–18):1343–59. doi:10.1016/j.compstruc.2006.08.079.
  • Andrade, A., D. Camotim, and P. Providência e Costa. 2007. On the evaluation of elastic critical moments in doubly and singly symmetric I section cantilevers. Journal of Constructional Steel Research 63 (7):894–908. doi:10.1016/j.jcsr.2006.08.015.
  • Asgarian, B., M. Soltani, and F. Mohri. 2013. Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections. Thin-Walled Structures 62:96–108. doi:10.1016/j.tws.2012.06.007.
  • Assadi, M., and C. W. Roeder. 1985. Stability of continuously restrained cantilevers. Journal of Engineering Mechanics 111 (12):1440–56. doi:10.1061/(ASCE)0733-9399(1985)111:12(1440).
  • Aydin, R., A. Gunaydin, and N. Kirac. 2015. On the evaluation of critical lateral buckling loads of prismatic steel beams. Steel and Composite Structures 18 (3):603–21. doi:10.12989/scs.2015.18.3.603.
  • Aydin, R., H. Ozbasaran, N. Kirac, and A. Gunaydin. 2013. Lateral torsional buckling of double angle and tee cantilevers: A parametric study. Proceedings of the Fourteenth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press, Stirlingshire, Scotland. doi:10.4203/ccp.102.19.
  • Barsoum, R. S., and R. H. Gallagher. 1970. Finite element analysis of torsional and torsional–flexural stability problems. International Journal for Numerical Methods in Engineering 2 (3):335–52. doi:10.1002/nme.1620020304.
  • Belaid, T., F. Ammari, and R. Adman. 2018. Influence of load position on critical lateral torsional buckling moment of laterally restrained beam at tense flange. Asian Journal of Civil Engineering 19 (7):839–48. doi:10.1007/s42107-018-0067-7.
  • Benyamina, A. B., S. A. Meftah, F. Mohri, and E. M. Daya. 2013. Analytical solutions attempt for lateral torsional buckling of doubly symmetricweb-tapered I-beams. Engineering Structures 56:1207–19. doi:10.1016/j.engstruct.2013.06.036.
  • Bleich, F. 1952. Buckling strength of metal structures. New York: McGraw Hill.
  • Bradford, M. A., and H. R. Ronagh. 1997. Generalized elastic buckling of restrained i-beams by FEM. Journal of Structural Engineering 123 (12):1631–7. doi:10.1061/(ASCE)0733-9445(1997)123:12(1631).
  • Bresser, D., G. J. P. Ravenshorst, and P. C. J. Hoogenboom. 2020. General formulation of equivalent moment factor for elastic lateral torsional buckling of slender rectangular sections and I-sections. Engineering Structures 207:110230. doi:10.1016/j.engstruct.2020.110230.
  • Bui, H. C. 2009. Buckling analysis of thin-walled sections under general loading conditions. Thin-Walled Structures 47 (6–7):730–9. doi:10.1016/j.tws.2008.12.003.
  • Bui, H. C. 2012. Semi-analytical finite strip method based on the shallow shell theory in buckling analysis of cold-formed sections. Thin-Walled Structures 50 (1):141–6. doi:10.1016/j.tws.2011.09.005.
  • Chajes, A. 1974. Principles of structural stability theory. Englewood Cliffs, NJ: Prentice-Hall.
  • Challamel, N., A. Andrade, D. Camotim, and B. M. Milisavlevich. 2010. Flexural-torsional buckling of cantilever strip beam-columns with linearly varying depth. Journal of Engineering Mechanics 136 (6):787–800. doi:10.1061/(asce)em.1943-7889.0000121.
  • Challamel, N., and C. M. Wang. 2010. Exact lateral-torsional buckling solutions for cantilevered beams subjected to intermediate and end transverse point loads. Thin-Walled Structures 48 (1):71–6. doi:10.1016/j.tws.2009.08.006.
  • Chen, W. F., and E. M. Lui. 1987. Structural stability: Theory and implementation. New York: Elsevier Science Publishing Co. Inc.
  • Chen, W. F., and T. Atsuta. 1977. Theory of beam-columns: Space behavior and design, vol. 2. New York: McGraw-Hill.
  • Cheng, S., B. Kim, and L. Li. 2013. Lateral–torsional buckling of cold-formed channel sections subject to combined compression and bending. Journal of Constructional Steel Research 80:174–80. doi:10.1016/j.jcsr.2012.07.026.
  • De Carvalho, A. S., A. Rossi, and C. H. Martins. 2022. Assessment of lateral–torsional buckling in steel I-beams with sinusoidal web openings. Thin-Walled Structures 175 (109242):109242. doi:10.1016/j.tws.2022.109242.
  • Demirhan, A. L., H. E. Eroğlu, E. O. Mutlu, T. Yılmaz, and Ö. Anil. 2020. Experimental and numerical evaluation of inelastic lateral-torsional buckling of I-section cantilevers. Journal of Constructional Steel Research 168 (105991):105991. doi:10.1016/j.jcsr.2020.105991.
  • Dražumeric, R., and F. Kosel. 2005. Optimization of geometry for lateral buckling process of a cantilever beam in the elastic region. Thin-Walled Structures 43 (3):515–29. doi:10.1016/j.tws.2004.07.011.
  • Drazumeric, R., and F. Kosel. 2012. Shape optimization of beam due to lateral buckling problem. International Journal of Non-Linear Mechanics 47 (3):65–74. doi:10.1016/j.ijnonlinmec.2011.12.004.
  • Galambos, T. V., and A. E. Surovek. 2008. Structural stability of steel: Concepts and application for structural engineers. NJ: John Wiley and Sons.
  • Gelera, K. M., and J. S. Park. 2012. Elastic lateral torsional buckling strength of monosymmetric stepped I-beams. KSCE Journal of Civil Engineering 16 (5):785–93. doi:10.1007/s12205-012-1255-8.
  • Giżejowski, M., R. Szczerba, M. Gajewski, and Z. Stachura. 2016. On the resistance evaluation of lateral-torsional buckling of bisymmetrical I-section beams using finite element simulations. Procedia Engineering 153:180–8. doi:10.1016/j.proeng.2016.08.100.
  • Gonçalves, R. 2019. An assessment of the lateral-torsional buckling and post-buckling behaviour of steel I-section beams using a geometrically exact beam finite element. Thin-Walled Structures 143:106222. doi:10.1016/j.tws.2019.106222.
  • Gu, J. X., and S. L. Chan. 2005. A refined finite element formulation for flexural and torsional buckling of beam-columns with finite rotations. Engineering Structures 27 (5):749–59. doi:10.1016/j.engstruct.2004.12.011.
  • Hamaidia, A., F. Mohri, and C. Bouzerira. 2019. Higher buckling and lateral buckling strength of unrestrained and braced thin-walled beams: Analytical, numerical and design approach applications. Journal of Constructional Steel Research 155:1–19. doi:10.1016/j.jcsr.2018.12.007.
  • Hancock, G. J., and N. S. Trahair. 1978. Finite element analysis of lateral buckling of continuously restrained beam-columns. Transactions of the Institution of Engineers, Australia. Civil Engineering CE20 (2):120–7.
  • Hill, H. N., and J. W. Clark. 1951. Lateral buckling of eccentrically loaded I-section columns. Transactions of the American Society of Civil Engineers 116 (1):1179–91. doi:10.1061/TACEAT.0006510.
  • Ioannidis, G. I., and T. P. Avraam. 2012. Lateral-torsional buckling of simply supported beams under uniform bending and axial tensile force. Archive of Applied Mechanics 82 (10–11):1393–402. doi:10.1007/s00419-012-0680-y.
  • Kim, B., L. Li, and A. Edmonds. 2016. Analytical solutions of lateral-torsional buckling of castellated beams. International Journal of Structural Stability and Dynamics 16 (08):1550044. doi:10.1142/S0219455415500443.
  • Kitipomchai, S., P. F. Dux, and N. J. Richter. 1984. Buckling and bracing of cantilevers. Journal of Structural Engineering 110 (9):2250–62. doi:10.1061/(ASCE)0733-9445(1984)110:9(2250).
  • Kitipornchai, S., and N. J. Richter. 1978. Elastic lateral buckling of i-beams with discrete intermediate restraints. Transactions of the Institution of Engineers, Australia. Civil Engineering 20 (2):105–11.
  • Kitipornchai, S., and N. S. Trahair. 1975. Buckling of inelastic I-beams under moment gradient. Journal of the Structural Division 101 (5):991–1004. doi:10.1061/JSDEAG.0004071.
  • Kitipornchai, S., C. M. Wang, and N. S. Trahair. 1986. Buckling of monosymmetric I beams under moment gradient. Journal of Structural Engineering 112 (4):781–99. doi:10.1061/(ASCE)0733-9445(1986)112:4(781).
  • Kováč, M. 2012. Lateral-torsional buckling of web-tapered I-beams. 1D and 3D FEM approach. Procedia Engineering 40:217–22. doi:10.1016/j.proeng.2012.07.083.
  • Kucukler, M., and L. Gardner. 2018. Design of laterally restrained web-tapered steel structures through a stiffness reduction method. Journal of Constructional Steel Research 141:63–76. doi:10.1016/j.jcsr.2017.11.014.
  • Kucukler, M., and L. Gardner. 2019. Design of web-tapered steel beams against lateral-torsional buckling through a stiffness reduction method. Engineering Structures 190:246–61. doi:10.1016/j.engstruct.2019.04.008.
  • Kucukler, M., L. Gardner, and L. Macorini. 2015a. Lateral-torsional buckling assessment of steel beams through a stiffness reduction method. Journal of Constructional Steel Research 109:87–100. doi:10.1016/j.jcsr.2015.02.008.
  • Kucukler, M., L. Gardner, and L. Macorini. 2015b. Flexural-torsional buckling assessment of steel beam-columns through a stiffness reduction method. Engineering Structures 101:662–76. doi:10.1016/j.engstruct.2015.07.041.
  • Kus, J. 2015. Lateral-torsional buckling steel beams with simultaneously tapered flanges and web. Steel and Composite Structures 19 (4):897–916. doi:10.12989/scs.2015.19.4.897.
  • Lee, H., D. W. Jung, J. H. Jeong, and S. Im. 1994. Finite element analysis of lateral buckling for beam structures. Computers and Structures 53 (6):1357–71.
  • Lim, N. H., N. H. Park, Y. J. Kang, and I. H. Sung. 2003. Elastic buckling of I-beams under linear moment gradient. International Journal of Solids and Structures 40 (21):5635–47. doi:10.1016/S0020-7683(03)00330-5.
  • LTBeamN. 2015. Centre technique industriel de la construction metallique.
  • Mohammadi, E., S. S. Hosseini, and J. AsgariMarnani. 2018. An interactive solution for lateral-torsional buckling of the mono-symmetric beam-columns with discrete lateral bracings. Structures 14:164–77. doi:10.1016/j.istruc.2018.03.006.
  • Mohammadi, E., S. S. Hosseini, and S. M. Rohanimanesh. 2016. Elastic lateral-torsional buckling strength and torsional bracing stiffness requirement for monosymmetric I-beams. Thin-Walled Structures 104:116–25. doi:10.1016/j.tws.2016.03.003.
  • Mohri, F., A. Brouki, and J. C. Roth. 2003. Theoretical and numerical stability analyses of unrestrained, mono-symmetric thin-walled beams. Journal of Constructional Steel Research 59 (1):63–90. doi:10.1016/S0143-974X(02)00007-X.
  • Mohri, F., A. Eddinari, N. Damil, and M. Potier-Ferry. 2008. A beam finite element for non-linear analyses of thin-walled elements. Thin-Walled Structures 46 (7–9):981–90. doi:10.1016/j.tws.2008.01.028.
  • Mohri, F., C. Bouzerira, and M. Potier-Ferry. 2008. Lateral buckling of thin-walled beam-column elements under combined axial and bending loads. Thin-Walled Structures 46 (3):290–302. doi:10.1016/j.tws.2007.07.017.
  • Mohri, F., N. Damil, and M. Potier-Ferry. 2013. Buckling and lateral buckling interaction in thin-walled beam-column elements with mono-symmetric cross sections. Applied Mathematical Modelling 37 (5):3526–40. doi:10.1016/j.apm.2012.07.053.
  • Mudenda, K., and A. Zingoni. 2018. Lateral-torsional buckling behavior of hot-rolled steel beams with flange upstands. Journal of Constructional Steel Research 144:53–64. doi:10.1016/j.jcsr.2018.01.001.
  • Naderian, H. R., and H. R. Ronagh. 2015. Buckling analysis of thin-walled cold-formed steel structural members using complex finite strip method. Thin-Walled Structures 90:74–83. doi:10.1016/j.tws.2015.01.008.
  • Nguyen, N. D., H. Nguyen-Van, S. Y. Han, J. H. Choi, and Y. J. Kang. 2013. Elastic lateral-torsional buckling of tapered I-girder with corrugated webs. International Journal of Steel Structures 13 (1):71–9. doi:10.1007/s13296-013-1007-8.
  • Osmani, A., and S. A. Meftah. 2018. Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed. Engineering Structures 165:76–87. doi:10.1016/j.engstruct.2018.03.009.
  • Ozbasaran, H. 2013. Finite differences approach for calculating elastic lateral torsional buckling moment of cantilever I sections. Anadolu University Journal of Science and Technology- A- Applied Science and Engineering 14 (2):143–52. doi:10.18038/BTD-A.89119.
  • Ozbasaran, H. 2018. Optimal design of I-section beam-columns with stress, non-linear deflection and stability constraints. Engineering Structures 171:385–94. doi:10.1016/j.engstruct.2018.05.110.
  • Ozbasaran, H. 2019. Convergence of the Rayleigh–Ritz Method for buckling analysis of arbitrarily configured I-section beam–columns. Archive of Applied Mechanics 89 (12):2397–414. doi:10.1007/s00419-019-01508-1.
  • Ozbasaran, H., and T. Yilmaz. 2018. Shape optimization of tapered I-beams with lateral-torsional buckling, deflection and stress constraints. Journal of Constructional Steel Research 143:119–30. doi:10.1016/j.jcsr.2017.12.022.
  • Ozbasaran, H., R. Aydın, and M. Dogan. 2015. An alternative design procedure for lateral-torsional buckling of cantilever I-beams. Thin-Walled Structures 90:235–42. doi:10.1016/j.tws.2015.01.021.
  • Papangelis, J. P., N. S. Trahair, and G. L. Hancock. 1998. Elastic flexural–torsional buckling of structures by computer. Computers & Structures 68 (1–3):125–37. doi:10.1016/S0045-7949(98)00037-6.
  • Park, J. S., J. M. Stallings, and Y. J. Kang. 2004. Lateral-torsional buckling of prismatic beams with continuous top-flange bracing. Journal of Constructional Steel Research 60 (2):147–60. doi:10.1016/j.jcsr.2003.08.013.
  • Poley, S. 1956. Lateral buckling of cantilever I-beams under uniform load. Transactions of the American Society of Civil Engineers 121 (1):786–90. doi:10.1061/TACEAT.0007376.
  • Powell, G., and R. Kingner. 1970. Elastic lateral buckling of steel beams. Journal of the Structural Division 96 (9):1919–32. doi:10.1061/JSDEAG.0002692.
  • Salvadori, M. G. 1956. Lateral buckling of eccentrically loaded I columns. Transactions of the American Society of Civil Engineers 121 (1):1163–78. doi:10.1061/TACEAT.0007386.
  • Saoula, A., M. M. Selim, S. A. Meftah, A. B. Benyamina, and A. Tounsi. 2021. Simplified analytical method for lateral torsional buckling assessment of RHS beams with web openings. Structures 34:2848–60. doi:10.1016/j.istruc.2021.09.034.
  • Saoula, A., S. A. Meftah, F. Mohri, and E. M. Daya. 2016. Lateral buckling of box beam elements under combined axial and bending loads. Journal of Constructional Steel Research 116 (141–155):141–55. doi:10.1016/j.jcsr.2015.09.009.
  • Sapountzakis, E. J., and J. A. Dourakopoulos. 2009. Lateral buckling analysis of beams of arbitrary cross section by BEM. Computational Mechanics 45 (1):11–21. doi:10.1007/s00466-009-0416-1.
  • Schillo, N., and M. Feldmann. 2014. Interaction of local buckling and lateral torsional buckling of T-shaped cantilevering beams. Thin-Walled Structures 81:236–41. doi:10.1016/j.tws.2013.10.017.
  • Serna, M. A., A. Lopez, I. Puente, and D. J. Yong. 2006. Equivalent uniform moment factors for lateral-torsional buckling of steel members. Journal of Constructional Steel Research 62 (6):566–80. doi:10.1016/j.jcsr.2005.09.001.
  • Sobhani, E. 2022a. On the vibrational analysis of combined paraboloidal-conical air vehicle segment shell-type structures. Aerospace Science and Technology 129:107823. doi:10.1016/j.ast.2022.107823.
  • Sobhani, E. 2022b. Vibrational performance modeling for coupling of a full-ellipsoid shell with a cylindrical shell with a focus on flexibility at coupling and boundary conditions via the GDQ-meshless method. Engineering Analysis with Boundary Elements 144:329–51. doi:10.1016/j.enganabound.2022.08.037.
  • Sobhani, E., A. R. Masoodi, and A. R. Ahmadi-Pari. 2022a. Free-damped vibration analysis of graphene nano-platelet nanocomposite joined conical-conical-cylindrical shell marine-like structures. Ocean Engineering 261 (112163):112163. doi:10.1016/j.oceaneng.2022.112163.
  • Sobhani, E., A. R. Masoodi, and A. R. Ahmadi-Pari. 2022b. Circumferential vibration analysis of nano-porous-sandwich assembled spherical-cylindrical-conical shells under elastic boundary conditions. Engineering Structures 273 (115094):115094. doi:10.1016/j.engstruct.2022.115094.
  • Sobhani, E., A. R. Masoodi, and A. R. Ahmadi-Pari. 2022c. Wave frequency responses estimate of the nanocomposite linked hemispherical-conical shell underwater-like bodies with the impacts of two types of graphene-based nanofillers. Ocean Engineering 262:112329. doi:10.1016/j.oceaneng.2022.112329.
  • Sobhani, E., A. R. Masoodi, and Ö. Civalek. 2022. On vibrational-based numerical simulation of a jet engine cowl shell-like structure. Mechanics of Advanced Materials and Structures 1–12. Advance online publication. doi:10.1080/15376494.2022.2087241.
  • Soltani, M., and B. Asgarian. 2021. Exact stiffness matrices for lateral–torsional buckling of doubly symmetric tapered beams with axially varying material properties. Iranian Journal of Science and Technology, Transactions of Civil Engineering 45 (2):589–609. doi:10.1007/s40996-020-00402-z.
  • Suryoatmono, B., and D. Ho. 2002. The moment-gradient factor in lateral-torsional buckling on wide flange steel sections. Journal of Constructional Steel Research 58 (9):1247–64. doi:10.1016/S0143-974X(01)00061-X.
  • The MathWorks Inc. 2022. MATLAB version R2022a. Natick, MA: The MathWorks Inc.
  • Timoshenko, S. P., and J. M. Gere. 1961. Theory of elastic stability. 2nd ed. New York: McGraw-Hill.
  • Torkamani, M. A. M., and E. R. Roberts. 2009. Energy equations for elastic flexural-torsional buckling analysis of plane structures. Thin-Walled Structures 47 (4):463–73. doi:10.1016/j.tws.2008.06.006.
  • Trahair, N. S. 1993. Flexural-torsional buckling of structures. London: CRC Press.
  • Trahair, N. S. 2017. Lateral buckling of tapered members. Engineering Structures 151:518–26. doi:10.1016/j.engstruct.2017.08.038.
  • Valeš, J., and T. C. Stan. 2017. FEM modelling of lateral-torsional buckling using shell and solid elements. Procedia Engineering 190:464–71. doi:10.1016/j.proeng.2017.05.365.
  • Van Pham, P. 2022. An innovated theory and closed form solutions for the elastic lateral torsional buckling analysis of steel beams/columns strengthened with symmetrically balanced GFRP laminates. Engineering Structures (256):114046. doi:10.1016/j.engstruct.2022.114046.
  • Wang, C. M., and S. Kitipornchai. 1986. On Stability of monosymmetric cantilevers. Engineering Structures 8 (3):169–80. doi:10.1016/0141-0296(86)90050-7.
  • Wolfram Mathematica. 2016. Wolfram Research Inc.
  • Yilmaz, T., and N. Kirac. 2017. Analytical and parametric investigations on lateral torsional buckling of European IPE and IPN beams. International Journal of Steel Structures 17 (2):695–709. doi:10.1007/s13296-017-6024-6.
  • Yilmaz, T., N. Kiraç, and Ö. Anil. 2019. An alternative evaluation of the LTB behavior of mono-symmetric beam-columns. Steel and Composite Structures 30:471–81. doi:10.12989/scs.2019.30.5.471.
  • Yilmaz, T., N. Kirac, and T. Kilic. 2017. Lateral-torsional buckling of European wide flange I-section beams. Proceedings of the 2nd World Congress on Civil, Structural and Environmental Engineering (CSEE’17), April 2017.
  • Yuan, W., B. Kim, and C. Chen. 2013. Lateral-torsional buckling of steel web tapered tee-section cantilevers. Journal of Constructional Steel Research 87:31–7. doi:10.1016/j.jcsr.2013.03.026.
  • Zhang, L., and G. S. Tong. 2008. Elastic flexural-torsional buckling of thin-walled cantilevers. Thin-Walled Structures 46 (1):27–37. doi:10.1016/j.tws.2007.08.011.
  • Zhang, L., and G. Tong. 2016. Lateral buckling of simply supported C- and Z-section purlins with top flange horizontally restrained. Thin-Walled Structures 99:155–67. doi:10.1016/j.tws.2015.11.019.
  • Zhang, W. F., Y. C. Liu, G. L. Hou, K. S. Chen, J. Ji, Y. Deng, and S. L. Deng. 2016. Lateral-torsional buckling analysis of cantilever beam with tip lateral elastic brace under uniform and concentrated load. International Journal of Steel Structures 16 (4):1161–73. doi:10.1007/s13296-016-0052-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.