180
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical thermal damping vibration analysis of functionally graded viscoelastic Timoshenko microbeam with integral nonlocal strain gradient model

&
Pages 4337-4360 | Received 05 Apr 2023, Accepted 15 Jun 2023, Published online: 30 Jun 2023

References

  • Al-Furjan, M. S. H., E. Samimi-Sohrforozani, M. Habibi, D. W. Jung, and H. Safarpour. 2021. Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Composite Structures 257, 113152.
  • Ansari, R., M. F. Oskouie, F. Sadeghi, and M. Bazdid-Vahdati. 2015. Free vibration of fractional viscoelastic Timoshen co nanobeams using the nonlocal elasticity theory. Physica E: Low-Dimensional Systems and Nanostructures 74:318–27. doi:10.1016/j.physe.2015.07.013.
  • Barretta, R., S. Ali Faghidian, F. M. de Sciarra, and F. P. Pinnola. 2021. Timoshenko nonlocal strain gradient nanobeams: Variational consistency, exact solutions and carbon nanotube Young moduli. Mechanics of Advanced Materials and Structures 28 (15):1523–36. doi:10.1080/15376494.2019.1683660.
  • Barretta, R., and F. M. de Sciarra. 2018. Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. International Journal of Engineering Science 130:187–98. doi:10.1016/j.ijengsci.2018.05.009.
  • Bian, P. L., and H. Qing. 2021. On bending consistency of Timoshenko beam using differential and integral nonlocal strain gradient models. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik 101, e202000132.
  • Ebrahimi, F., and M. R. Barati. 2017a. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Composite Structures 159:433–44. doi:10.1016/j.compstruct.2016.09.092.
  • Ebrahimi, F., and M. R. Barati. 2017b. Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects. Acta Mechanica 228 (3):1197–210. doi:10.1007/s00707-016-1755-6.
  • Ebrahimi, F., and M. R. Barati. 2018. Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation. Journal of Vibration and Control 24 (10):2080–95. doi:10.1177/1077546316678511.
  • Ebrahimi, F., and M. R. Barati. 2019. Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43 (2):187–203. doi:10.1007/s40997-017-0127-8.
  • Eldred, L. B., W. P. Baker, and A. N. Palazotto. 1995. Kelvin–Voigt vs fractional derivative model as constitutive relations for viscoelastic materials. The American Institute of Aeronautics and Astronautics (AIAA) Journal 33 (3):547–50. doi:10.2514/3.12471.
  • Eringen, A. C., and D. G. B. Edelen. 1972. On nonlocal elasticity. International Journal of Engineering Science 10 (3):233–48. doi:10.1016/0020-7225(72)90039-0.
  • Eyebe, G. J., G. Betchewe, A. Mohamadou, and T. C. Kofane. 2018. Nonlinear vibration of a nonlocal nanobeam resting on fractional-order viscoelastic Pasternak foundations. Fractal and Fractional 2 (3):21. doi:10.3390/fractalfract2030021.
  • Ghabussi, A., N. Ashrafi, A. Shavalipour, A. Hosseinpour, M. Habibi, H. Moayedi, B. Babaei, and H. Safarpour. 2021. Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mechanics Based Design of Structures and Machines 49 (5):738–62. doi:10.1080/15397734.2019.1705166.
  • Ghayesh, M. H. 2018. Dynamics of functionally graded viscoelastic microbeams. International Journal of Engineering Science 124:115–31. doi:10.1016/j.ijengsci.2017.11.004.
  • Ghayesh, M. H. 2019. Viscoelastic dynamics of axially FG microbeams. International Journal of Engineering Science 135:75–85. doi:10.1016/j.ijengsci.2018.10.005.
  • Kadoli, R., K. Akhtar, and N. Ganesan. 2008. Static analysis of functionally graded beams using higher order shear deformation theory. Applied Mathematical Modelling 32 (12):2509–25. doi:10.1016/j.apm.2007.09.015.
  • Kröner, E. 1967. Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures 3:12.
  • Lam, D. C. C., F. Yang, A. C. M. Chong, J. Wang, and P. Tong. 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51 (8):1477–508. doi:10.1016/S0022-5096(03)00053-X.
  • Lei, Y., S. Adhikari, and M. I. Friswell. 2013a. Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. International Journal of Engineering Science 66-67:1–13. doi:10.1016/j.ijengsci.2013.02.004.
  • Lei, Y., T. Murmu, S. Adhikari, and M. I. Friswell. 2013b. Dynamic characteristics of damped viscoelastic nonlocal Euler Bernoulli beams. European Journal of Mechanics - A/Solids 42:125–36. doi:10.1016/j.euromechsol.2013.04.006.
  • Li, C., H. Qing, and C. Gao. 2021. Theoretical analysis for static bending of Euler–Bernoulli beam using different nonlocal gradient models. Mechanics of Advanced Materials and Structures 28 (19):1965–77. doi:10.1080/15376494.2020.1716121.
  • Lim, C. W., G. Zhang, and J. N. Reddy. 2015. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids 78:298–313. doi:10.1016/j.jmps.2015.02.001.
  • Lin, Z., and Y. Wei. 2020. A strain gradient linear viscoelasticity theory. International Journal of Solids and Structures 203:197–209. doi:10.1016/j.ijsolstr.2020.08.008.
  • Mindlin, R. D., and N. N. Eshel. 1968. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures 4 (1):109–24. doi:10.1016/0020-7683(68)90036-X.
  • Mindlin, R. D., and H. F. Tiersten. 1962. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis 11 (1):415–48. doi:10.1007/BF00253946.
  • Mohammadimehr, M., A. A. Monajemi, and M. Moradi. 2015. Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-Pasternak foundation using DQM. Journal of Mechanical Science and Technology 29 (6):2297–305. doi:10.1007/s12206-015-0522-2.
  • Naghinejad, M., and H. R. Ovesy. 2019. Viscoelastic free vibration behavior of nano-scaled beams via finite element nonlocal integral elasticity approach. Journal of Vibration and Control 25 (2):445–59. doi:10.1177/1077546318783556.
  • Nesic, N., M. Cajic, D. Karlicic, A. Obradovic, and J. Simonovic. 2022. Nonlinear vibration of a nonlocal functionally graded beam on fractional visco-Pasternak foundation. Nonlinear Dynamics 107:2003–26.
  • Taheran, F., M. T. Ahmadian, V. Monfared, and D. Toghraie. 2022. Size effects on stability and bifurcation of nonlinear viscoelastic microcantilevers based on strain gradient. Journal of the Brazilian Society of Mechanical Sciences and Engineering 44, 10.
  • Tang, Y., and H. Qing. 2021. Elastic buckling and free vibration analysis of functionally graded Timoshenko beam with nonlocal strain gradient integral model. Applied Mathematical Modelling 96:657–77. doi:10.1016/j.apm.2021.03.040.
  • Wang, J., and H. Shen. 2019. Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory. Journal of Physics-Condensed Matter 31, 485403.
  • Yang, F., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi:10.1016/S0020-7683(02)00152-X.
  • Zaera, R., O. Serrano, and J. Fernandez-Saez. 2019. On the consistency of the nonlocal strain gradient elasticity. International Journal of Engineering Science 138:65–81. doi:10.1016/j.ijengsci.2019.02.004.
  • Zhen, Y.-X., S.-L. Wen, and Y. Tang. 2019. Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model. Physica E: Low-Dimensional Systems and Nanostructures 105:116–24. doi:10.1016/j.physe.2018.09.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.