296
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic buckling analysis of functionally graded shells

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4399-4414 | Received 03 Aug 2022, Accepted 14 Jun 2023, Published online: 30 Jun 2023

References

  • Alwar, R. S., and B. S. Reddy. 1979. Dynamic buckling of isotropic and orthotropic shallow spherical cap with circular hole. International Journal of Mechanical Sciences 21 (11):681–688. doi:10.1016/0020-7403(79)90047-X.
  • Amieur, B. 2019. Instabilité par flambement dynamique des plaques et coques FGM. Thèse doctorat, Uiversité Tahri Mohamed Béchar.
  • Amieur, B., M. Djermane, and F. Hammadi. 2017. Nonlinear analysis of degenerated FGM shells. International Journal of Applied Engineering Research 12 (21):11511–11522.
  • Anitescu, C., E. Atroshchenko, N. Alajlan, and T. Rabczuk. 2019. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials and Continua 59 (1):345–359. doi:10.32604/cmc.2019.06641.
  • Ari-Gur, J., and I. Elishakoff. 1997. Dynamic instability of a transversely isotropic column subjected to a compression pulse. Computers & Structures 62 (5):811–815. doi:10.1016/S0045-7949(96)00295-7.
  • Ari-Gur, J., and S. Simonetta. 1997. Dynamic pulse buckling of rectangular composite plates. Composites Part B: Engineering 28 (3):301–308. doi:10.1016/S1359-8368(96)00028-5.
  • Ari-Gur, J., T. Weller, and J. Singer. 1982. Experimental and theoretical studies of columns under axial impact. International Journal of Solids and Structures 18 (7):619–641. doi:10.1016/0020-7683(82)90044-0.
  • Budiansky, B. 1959. Buckling of clamped shallow spherical shells. Cambridge, MA: Harvard Univ.
  • Budiansky, B. 1962. Axisymmetric dynamic buckling of clamped shallow spherical shells. Collected papers on instability of shell structures, NASA TN 1510, 597–606.
  • Budiansky, B. 1967. Dynamic buckling of elastic structures: criteria and estimates. Dynamic Stability of Structures, Proceedings of an International Conference Held at Northwestern University, Evanston, Illinois: 83–106. doi:10.1016/B978-1-4831-9821-7.50010-7.
  • Budiansky, B., and J. W. Hutchinson. 1966a. Dynamic buckling of imperfection-sensitive structures. In Applied Mechanics, edited by H. Görtler, 636–651. Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-29364-5_85.
  • Budiansky, B., and J. W. Hutchinson. 1966b. Dynamic buckling estimates. AIAA Journal 4 (3):525–530. doi:10.2514/3.3468.
  • Chao, C. C., and I. S. Lin. 1990. Static and dynamic snap-through of orthotropic spherical caps. Composite Structures 14 (4):281–301. doi:10.1016/0263-8223(90)90011-3.
  • Chi, S. H., and Chung Y. L. 2006b. Mechanical behavior of functionally graded material plates under transverse load – part II: numerical results. International Journal of Solids and Structures 43 (13):3675–3691. doi:10.1016/j.ijsolstr.2005.04.010.
  • Chi, S. H., and Y. L. Chung 2006a. Mechanical behavior of functionally graded material plates under transverse load – part I: analysis. International Journal of Solids and Structures 43 (13):3657–3674. doi:10.1016/j.ijsolstr.2005.04.011.
  • Clough, D. P. 1977. Experimental evaluation of seismic design methods for broad cylindrical tanks. Berkeley: University of California.
  • Djermane, M. 2007. Flambement dynamique des coques minces en zones sismique. Alger: University of Science and Technology Houri Boumediene.
  • Djermane, M., A. Chelghoum, B. Amieur and B. Labbaci. 2006. The linear and nonlinear thin shell analysis using a mix finite element with drilling degrees of freedom. International Journal of Applied Engineering Research 1 (2):217–236.
  • Djermane, M., A. Chelghoum, B. Amieur and B. Labbaci. 2007. Nonlinear dynamic analysis of thin shells using a finite element with drilling degrees of freedom. International Journal of Applied Engineering Research 2 (1):97–108.
  • Djermane, M., D. Zaoui., B. Labbaci, and F. Hammadi. 2014. Dynamic buckling of steel tanks under seismic excitation: numerical evaluation of code provisions. Engineering Structures 70:181–196. doi:10.1016/j.engstruct.2014.03.037.
  • Djermane, M. 1991. Analyse des coques minces par la méthode des éléments finis utilisation d'un élément tortionnel. Master thesis, University of Science and Technology Houari Boumedienne.
  • Dogan, V. 2013. Nonlinear vibration of FGM plates under random excitation. Composite Structures 95:366–374. doi:10.1016/j.compstruct.2012.07.024.
  • Ganapathi, M. 2007. Dynamic stability characteristics of functionally graded materials shallow spherical shells. Composites Structures 79 (3): 338–343. doi:10.1016/j.compstruct.2006.01.012.
  • Ganapathi, M., S. S. Gupta, and B. P. Patel. 2003. Nonlinear axisymmetric dynamic buckling of laminated angle-ply composite spherical caps. Composite Structures 59 (1):89–97. doi:10.1016/S0263-8223(02)00227-1.
  • Ganapathi, M., and T. K. Varadan. 1982. Dynamic buckling of orthotropic shallow spherical shells. Composite Structures 15 (5):517–520. doi:10.1016/0045-7949(82)90003-7.
  • Hoff, N. J. 1951. The dynamics of the buckling of elastic columns. Polytechnic Institute of Brooklyn, Department of Aeronautical Engineering and Applied Mechanics 18 (1):68–74. doi:10.1115/1.4010222.
  • Huang, N. C. 1969. Axisymmetric dynamic snap-through of elastic clamped shallow spherical shells, AIAA Journal 7 (2):215–220. doi:10.2514/3.5117.
  • Kanok-Nukulchai, W. 1979. A simple and efficient finite element for general shell analysis. International Journal for Numerical Methods in Engineering 14 (2):179–200. doi:10.1002/nme.1620140204.
  • Kao, R. 1980. Nonlinear dynamic buckling of spherical caps with initial imperfections. Computer and Structures 12 (1):49–63. doi:10.1016/0045-7949(80)90093-0.
  • Kounadis, A. N. 1988. Dynamic buckling of limit-point systems under step loading. Dynamics and Stability of Systems 3 (3-4):219–234. doi:10.1080/02681118808806057.
  • Lee, K. H., N. R Senthilnathan, S. P. Lim S, and S. T. Chow. 1989. A simple higher-order non-linear shear deformation plate theory. International Journal of Non-Linear Mechanics 24 (2):127–137. doi:10.1016/0020-7462(89)90004-8.
  • Le, C. I., N. A. T. Le, and D. K. Nguyen. 2021. Free vibration and buckling of bidirectional functionally graded sandwich beams using an enriched third-order shear deformation beam element. Composite Structures 261:113309. doi:10.1016/j.compstruct.2020.113309.
  • Le, C. I., Q. D. Tran, V. N. Pham, and D. K. Nguyen. 2021. Free vibration and buckling of bidirectional functionally graded sandwich plates using an efficient Q9 element. Vietnam Journal of Mechanics 43 (3):277–295. doi:10.15625/0866-7136/15981.
  • Moita, J. S., A. L. Araujo, C. M. Mota Soares, C. A. Mota Soares and J. Herskovits. 2016. Material and geometric nonlinear analysis of functionally graded plate-shell type structures. Applied Composite Materials 23:537–554. doi:10.1007/s10443-016-9473-8.
  • Park, J. S., and J. H. Kim. 2006. Thermal postbuckling and vibration analyses of functionally graded plates, Journal of Sound and Vibration 289 (1-2):77–93. doi:10.1016/j.jsv.2005.01.031.
  • Pradhan, S. C. 2005. Vibration suppression of FGM shells using embedded magnetostrictive layers, International Journal of Solids and Structures 42 (9-10): 2465–2488. doi:10.1016/j.ijsolstr.2004.09.049.
  • Saigal, S., T.Y. Yang and R.K. Kapania. 1987. Dynamic buckling of imperfection-sensitive shell structures. Journal of Aircraft 24 (4):718–724. doi:10.2514/3.45512.
  • Samaniego, E., C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk. 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362:112790. doi:10.1016/j.cma.2019.112790.
  • Shariyat, M. 2008. Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. International Journal of Mechanical Sciences 50 (12):1561–1571. doi:10.1016/j.ijmecsci.2008.10.009.
  • Shariyat, M. 2009. Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions. Composite Structures 88 (2):240–252. doi:10.1016/j.compstruct.2008.04.003.
  • Shen, H. S. 2002. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments. International Journal of Mechanical Sciences 44 (3):561–584. doi:10.1016/S0020-7403(01)00103-5.
  • Simitses, G. J. 1983. Effect of static preloading on the dynamic stability of structures. AIAA Journal 21 (8): 1174–1180. doi:10.2514/3.8223.
  • Simitses, G. J. 1984. Suddenly-loaded structural configurations. Journal of engineering mechanics 110 (9):1320–1334. doi:10.1061/(ASCE)0733-9399(1984)110:9(1320).
  • Simitses, G. J. 1987. Instability of dynamically-loaded structures. Applied Mechanics Reviews 40 (10):1403–1408. doi:10.1115/1.3149542.
  • Simitses, G. J., and I. Sheinman. 1982. Dynamic buckling of shell structures: concepts and applications. Acta Astronautica 9 (3):179–182. doi:10.1016/0094-5765(82)90087-X.
  • Simsek, M. 2009. Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. International Journal of Engineering and Applied Sciences 1 (3):1–11.
  • Sofiyev, A. H. 2009. The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Composite Structures 89 (3):356–366. doi:10.1016/j.compstruct.2008.08.010.
  • Stephens, W. B., and R. E. Fulton. 1969. Axisymmetric static and dynamic buckling of spherical caps due to centrally distributed pressures. AIAA Journal 7 (11):2120–2126. doi:10.2514/3.5567.
  • Stricklin, J. A., and J. E. Martinez. 1969. Dynamic buckling of clamped caps under step pressure loadigs. AIAA Journal 7 (6):1212–1213. doi:10.2514/3.5324.
  • Talha, M., and B. N. Singh. 2010. Large amplitude free flexural vibration analysis of shear deformable FGM plates using nonlinear finite element method. Finite Element in Analysis and Design 47 (4):394–401. doi:10.1016/j.finel.2010.11.006.
  • Teng, J. G. 1996. Buckling of thin shells: recent advances and trends. Applied Mechanics Reviews 49 (4):263–274. doi:10.1115/1.3101927.
  • Upadhyay, A. K., and K. K. Shukla. 2013. Geometrically nonlinear static and dynamic analysis of functionally graded skew plates. Communication in Nonlinear Science and Numerical Simulation 18 (8):2252–2279. doi:10.1016/j.cnsns.2012.12.034.
  • Vu-Bac, N., T. X. Duong, T. Lahmer, X. Zhuang, R. A. Sauer, H. S. Park, and T. Rabczuk. 2018. A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Computer Methods in Applied Mechanics and Engineering 331:427–455. doi:10.1016/j.cma.2017.09.034.
  • Zenkour, A. M. 2005a. A comprehensive analysis of functionally graded sandwich plates: part 1—deflection and stresses. International Journal of Solids and Structures 42 (18-19):5224–5242. doi:10.1016/j.ijsolstr.2005.02.015.
  • Zenkour, A. M. 2005b. A comprehensive analysis of functionally graded sandwich plates: part 2—Buckling and free vibration. International Journal of Solids and Structures 42 (18-19):5243–5258. doi:10.1016/j.ijsolstr.2005.02.016.
  • Zenkour, A. M. 2006. Generalized shear deformation theory for bending analysis of functionally graded plates. Applied Mathematical Modeling 30 (1):67–84. doi:10.1016/j.apm.2005.03.009.
  • Zenkour, A. M., and N. A. Alghamdi. 2010. Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads. Mechanics of Advanced Materials and Structures 17 (6):419–432. doi:10.1080/15376494.2010.483323.
  • Zenkour, A. M., and M. Sobhy. 2010. Thermal buckling of various types of FGM sandwich plates. Composite Structures 93 (1):93–102. doi:10.1016/j.compstruct.2010.06.012.
  • Zhang, N., T. Khan, H. Guo, S. Shi, W. Zhong, and W. Zhang. 2019. Functionally graded materials: an overview of stability, buckling, and free vibration analysis. Advances in Materials Science and Engineering 2019:1–18. doi:10.1155/2019/1354150.
  • Zhang, T., T. G. Liu, T. Zhao, and J. Z. Luo. 2004. Nonlinear dynamic buckling of stiffened plates under in-plane impact load. Journal of Zhejiang University-SCIENCE A 5 (5):609–617. doi:10.1631/jzus.2004.0609.
  • Zhuang, X., H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk. 2021. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics-A/Solids 87:104225. doi:10.1016/j.euromechsol.2021.104225.
  • Zizicas, G. A. 1952. Dynamic buckling of thin elastic plates. Transactions of the American Society of Mechanical Engineers 74 (7):1257–1266. doi:10.1115/1.4016090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.