61
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental verification and performance evaluation of an inertia-type bidirectional isolation system

, , &
Pages 4503-4526 | Received 08 May 2023, Accepted 16 Jun 2023, Published online: 30 Jun 2023

References

  • Araki, Y., T. Asai, and T. Masui. 2009. Vertical vibration isolator having piecewise-constant restoring force. Earthquake Engineering & Structural Dynamics 38 (13):1505–23. doi:10.1002/eqe.915.
  • Araki, Y., S. Kawabata, T. Asai, and T. Masui. 2011. Response of vibration-isolated object to ground motions with intense vertical accelerations. Engineering Structures 33 (12):3610–9. doi:10.1016/j.engstruct.2011.07.025.
  • Araki, Y., T. Asai, K. Kimura, K. Maezawa, and T. Masui. 2013. Nonlinear vibration isolator with adjustable restoring force. Journal of Sound and Vibration 332 (23):6063–77. doi:10.1016/j.jsv.2013.06.030.
  • Araki, Y., K. Kimura, T. Asai, T. Masui, T. Omori, and R. Kainuma. 2015. Integrated mechanical and material design of quasi-zero-stiffness vibration isolator with superelastic Cu-Al-Mn shape memory alloy bars. Journal of Sound and Vibration 358:74–83. doi:10.1016/j.jsv.2015.08.018.
  • Asai, T., Y. Araki, K. Kimura, and T. Masui. 2017. Adjustable vertical vibration isolator with a variable ellipse curve mechanism. Earthquake Engineering & Structural Dynamics 46 (8):1345–66. doi:10.1002/eqe.2859.
  • Calabrese, A., M. Spizzuoco, D. Losanno, and A. Barjani. 2020. Experimental and numerical investigation of wire rope devices in base isolation systems. Earthquakes and Structures 18 (3):275–84.
  • Calvi, P. M., M. Moratti, and G. M. Calvi. 2016. Seismic isolation devices based on sliding between surfaces with variable friction coefficient. Earthquake Spectra 32 (4):2291–315. doi:10.1193/091515EQS139M.
  • Eskandary-Malayery, F., S. Ilanko, B. Mace, Y. Mochida, and F. Pellicano. 2022. Experimental and numerical investigation of a vertical vibration isolator for seismic applications. Nonlinear Dynamics 109 (2):303–22. doi:10.1007/s11071-022-07613-1.
  • Farahmand-Tabar, S., and M. Barghian. 2023. Seismic evaluation of the bridge with a hybrid system of cable and arch: Simultaneous effect of seismic hazard probabilities and vertical excitations. Mechanics Based Design of Structures and Machines :1–17. doi:10.1080/15397734.2023.2172029.
  • Faramarz, K., and R. Montazar. 2010. Seismic response of double concave friction pendulum base-isolated structures considering vertical component of earthquake. Advances in Structural Engineering 13 (1):1–13. doi:10.1260/1369-4332.13.1.1.
  • Faridafshin, F., and G. Mcclure. 2008. Seismic response of tall-guyed masts to asynchronous multiple-support and vertical ground motions. Journal of Structural Engineering 134 (8):1374–82. doi:10.1061/(ASCE)0733-9445(2008)134:8(1374).
  • Fujita, T. 1985. Earthquake isolation technology for industrial facilities- research, development and applications in Japan. Bulletin of the New Zealand Society for Earthquake Engineering 18 (3):224–49. doi:10.5459/bnzsee.18.3.224-249.
  • Fujita, T. 1998. Seismic isolation of civil buildings in Japan. Progress in Structural Engineering and Materials 1 (3):295–300. doi:10.1002/pse.2260010311.
  • Furinghetti, M., and A. Pavese. 2017. Equivalent uniaxial accelerogram for CSS-based isolation systems assessment under two components seismic events. Mechanics Based Design of Structures and Machines 45 (3):282–95. doi:10.1080/15397734.2017.1281145.
  • Jangid, R. S. 1996. Seismic response of sliding structures to bidirectional earthquake excitation. Earthquake Engineering & Structural Dynamics 25 (11):1301–6. doi:10.1002/(SICI)1096-9845(199611)25:11<1301::AID-EQE618>3.0.CO;2-3.
  • Jangid, R. S., and J. M. Kelly. 2001. Base isolation for near-fault motion. Earthquake Engineering & Structural Dynamics 30 (5):691–707. doi:10.1002/eqe.31.
  • Jin, Y. L., T. X. Wu, and Z. G. Li. 2012. Shaking table tests and numerical analysis for vertical seismic response of quayside container cranes. International Journal of Structural Stability and Dynamics 12 (05):1250034. doi:10.1142/S0219455412500344.
  • Kim, S. J., C. J. Holub, and A. S. Elnashai. 2011. Analytical assessment of the effect of vertical earthquake motion on RC bridge piers. Journal of Structural Engineering 137 (2):252–60. doi:10.1061/(ASCE)ST.1943-541X.0000306.
  • Kitamura, S., S. Okamura, and K. Takahashi. 2005. Experimental study on vertical component seismic isolation system with coned disk spring. ASME Pressure Vessels and Piping Division Conference PVP2005-71356. Denver, Colorado, July 17–21.
  • Legeron, F., and M. N. Sheikh. 2009. Bridge support elastic reactions under vertical earthquake ground motion. Engineering Structures 31 (10):2317–26. doi:10.1016/j.engstruct.2009.05.001.
  • Li, X., H. Dou, and X. Zhu. 2007. Engineering characteristics of near-fault vertical ground motions and their effect on the seismic response of bridges. Earthquake Engineering and Engineering Vibration 6 (4):345–50. doi:10.1007/s11803-007-0723-5.
  • Lifelines. 1995. Earthquake Spectra 11 (3_suppl):139–48. doi:10.1193/1.1585863.
  • Lin, G. L., C. C. Lin, Y. H. Li, and T. T. Lin. 2022. Theoretical and experimental analysis of an electromagnetic seismic isolation system. Engineering Structures 250:113411. doi:10.1016/j.engstruct.2021.113411.
  • Liu, Y., W. Ji, E. Deng, X. Wang, and C. Song. 2023. Dynamic characteristics of two degree-of-freedom quasi-zero stiffness vibration isolation system with nonlinear springs. Mechanics Based Design of Structures and Machines 51 (6):3100–18. doi:10.1080/15397734.2021.1919142.
  • Losanno, D., D. De Domenico, and I. E. Madera-Sierra. 2022. Experimental testing of full-scale fiber reinforced elastomeric isolators (FREIs) in unbounded configuration. Engineering Structures 260:114234. doi:10.1016/j.engstruct.2022.114234.
  • Lu, L. Y., L. L. Chung, L. Y. Wu, and G. L. Lin. 2006. Dynamic analysis of structures with friction devices using discrete-time state-space formulation. Computers & Structures 84 (15–16):1049–71. doi:10.1016/j.compstruc.2005.12.005.
  • Lu, L. Y., T. Y. Lee, and S. W. Yeh. 2011. Theory and experimental study for sliding isolators with variable curvature. Earthquake Engineering & Structural Dynamics 40 (14):1609–27. doi:10.1002/eqe.1106.
  • Lu, L. Y., T. Y. Lee, S. Y. Juang, and S. W. Yeh. 2013. Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study. Engineering Structures 56 (2013):970–82. doi:10.1016/j.engstruct.2013.06.016.
  • Lu, L. Y., C. C. Lin, and G. L. Lin. 2013. Experimental evaluation of supplemental viscous damping for a sliding isolation system under pulse-like base excitation. Journal of Sound and Vibration 332 (8):1982–99. doi:10.1016/j.jsv.2012.12.008.
  • Lu, L. Y., P. R. Chen, and K. W. Pong. 2016. Theory and experiment of an inertia-type vertical isolation system for seismic protection of equipment. Journal of Sound and Vibration 366:44–61. doi:10.1016/j.jsv.2015.12.009.
  • Lu, L. Y., G. L. Lin, Y. S. Chen, and K. A. Hsiao. 2020. Vertical equipment isolation using a piezoelectric inertial-type isolation system. Smart Structures and Systems 26 (2):195–211.
  • Lu, L. Y., H. W. Huang, Y. Wu, and S. J. Wang. 2021. Theory and experimental verification of a double sliding isolator with variable curvature. Engineering Structures 238 (2021):112265. doi:10.1016/j.engstruct.2021.112265.
  • Makris, N., and S. P. Chang. 2000. Effect of viscous, visco-plastic and friction damping on the response of seismic isolated structures. Earthquake Engineering & Structural Dynamics 29 (1):85–107. doi:10.1002/(SICI)1096-9845(200001)29:1<85::AID-EQE902>3.0.CO;2-N.
  • Mazza, F., and S. Sisinno. 2017. Nonlinear dynamic behavior of base-isolated buildings with the friction pendulum system subjected to near-fault earthquakes. Mechanics Based Design of Structures and Machines 45 (3):331–44. doi:10.1080/15397734.2016.1277740.
  • Miranda, E., G. Mosqueda, R. Retamales, and G. Pekcan. 2012. Performance of nonstructural components during the 27 February 2010 Chile earthquake. Earthquake Spectra 28 (1_suppl1):453–71. doi:10.1193/1.4000032.
  • Moroni, M. O., M. Sarrazin, and P. Soto. 2012. Behavior of instrumented base-isolated structures during the 27 February 2010 Chile earthquake. Earthquake Spectra 28 (1_suppl1):407–24. doi:10.1193/1.4000041.
  • Murnal, P., and R. Sinha. 2004. Aseismic design of structure–equipment systems using variable frequency pendulum isolator. Nuclear Engineering and Design 231 (2):129–39. doi:10.1016/j.nucengdes.2004.03.009.
  • Nonstructural Damage. 1995. Earthquake Spectra 11 (2_suppl):453–514. doi:10.1193/1.1585856.
  • Orfeo, A., E. Tubaldi, A. H. Muhr, and D. Losanno. 2022. Mechanical behaviour of rubber bearings with low shape factor. Engineering Structures 266:114532. doi:10.1016/j.engstruct.2022.114532.
  • Panchal, V. R., and R. S. Jangid. 2009. Seismic response of structures with variable friction pendulum system. Journal of Earthquake Engineering 13 (2):193–216. doi:10.1080/13632460802597786.
  • Papazoglou, A. J., and A. S. Elnashai. 1996. Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering & Structural Dynamics 25 (10):1109–37. doi:10.1002/(SICI)1096-9845(199610)25:10<1109::AID-EQE604>3.0.CO;2-0.
  • Pellecchia, D., N. Vaiana, M. Spizzuoco, G. Serino, and L. Rosati. 2023. Axial hysteretic behaviour of wire rope isolators: Experiments and modelling. Materials & Design 225:111436. doi:10.1016/j.matdes.2022.111436.
  • Politopoulos, I., and N. Moussallam. 2012. Horizontal floor response spectra of base-isolated buildings due to vertical excitation. Earthquake Engineering & Structural Dynamics 41 (3):587–92. doi:10.1002/eqe.1139.
  • Rao, P. B., and R. S. Jangid. 2001. Performance of sliding systems under near-fault motions. Nuclear Engineering and Design 203 (2–3):259–72.
  • Shahi, S. K., and J. W. Baker. 2014. An efficient algorithm to identify strong‐velocity pulses in multicomponent ground motions. Bulletin of the Seismological Society of America 104 (5):2456–66. doi:10.1785/0120130191.
  • Schiff, A. J. 1991. Museums. Earthquake Spectra 7 (1_suppl):131–40. doi:10.1193/1.1585655.
  • Shimada, T., T. Fujiwaka, S. Moro, and S. Ikutama. 2004. Study on three-dimensional seismic isolation system for next-generation nuclear power plant hydraulic three-dimensional base isolation system. 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1–6, paper no.788.
  • Soni, D. P., B. B. Mistry, R. S. Jangid, and V. R. Panchal. 2011. Seismic response of the double variable frequency pendulum isolator. Structural Control and Health Monitoring 18 (4):450–70. doi:10.1002/stc.384.
  • Tsuji, Y., T. Sasaki, T. Waters, K. Fujito, and D. Wang. 2014. A nonlinear vibration isolator based on a post-buckled inverted L-shaped beam. 6th World Conference on Structural Control and Monitoring, Barcelona, Spain, July 15–17, Paper No. 376.
  • Vaiana, N., M. Spizzuoco, and G. Serino. 2017. Wire rope isolators for seismically base-isolated lightweight structures: Experimental characterization and mathematical modeling. Engineering Structures 140:498–514. doi:10.1016/j.engstruct.2017.02.057.
  • Wang, L. W., and L. Y. Lu. 2018. Generic 3D formulation for sliding isolators with variable curvature and its experimental verification. Engineering Structures 177:12–29. doi:10.1016/j.engstruct.2018.09.038.
  • Warn, G. P., and A. S. Whittaker. 2008. Vertical earthquake loads on seismic isolation systems in bridges. Journal of Structural Engineering 134 (11):1696–704. doi:10.1061/(ASCE)0733-9445(2008)134:11(1696).
  • Xu, Z. D., Q. Tu, and Y. F. Guo. 2012. Experimental study on vertical performance of multidimensional earthquake isolation and mitigation devices for long-span reticulated structures. Journal of Vibration and Control 18 (13):1971–85. doi:10.1177/1077546311429338.
  • Yang, T., P. M. Calvi, and R. Wiebe. 2020. Numerical implementation of variable friction sliding base isolators and preliminary experimental results. Earthquake Spectra 36 (2):767–87. doi:10.1177/8755293019891721.
  • Yau, J. D., and L. Fryba. 2007. Response of suspended beams due to moving loads and vertical seismic ground excitations. Engineering Structures 29 (12):3255–62. doi:10.1016/j.engstruct.2007.10.001.
  • Zhou, Z., J. Wong, and S. Mahin. 2016. Potentiality of using vertical and three-dimensional isolation systems in nuclear structures. Nuclear Engineering and Technology 48 (5):1237–51. doi:10.1016/j.net.2016.03.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.