269
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Nonlinear damping and forced vibration analysis of sandwich functionally graded material beams with composite viscoelastic core layer

, , , , &
Pages 4191-4210 | Received 11 Apr 2023, Accepted 17 Jun 2023, Published online: 13 Jul 2023

References

  • Allahkarami, F., M. Nikkhah-Bahrami, and M. G. Saryazdi. 2017. Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM. Steel and Composite Structures 25 (2):141–55. doi: 10.12989/scs.2017.25.2.141.
  • Barati, M. R. 2017. Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory. Materials Research Express 4 (11):115017. doi: 10.1088/2053-1591/aa9765.
  • Belouettar, S., L. Azrar, M. Daya, E. M. V. Laptev, and M. P. Ferry. 2008. Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach. Computers & Structures 86 (3–5):386–97. doi: 10.1016/j.compstruc.2007.02.009.
  • Bhimaraddi, A. 1995. Sandwich beam theory and the analysis of constrained layer damping. Journal of Sound and Vibration 179 (4):591–602. doi: 10.1006/jsvi.1995.0039.
  • Cheraghbak, A., M. B. Dehkordi, and H. Golestanian. 2019. Vibration analysis of sandwich beam with nanocomposite facesheets considering structural damping effects. Steel and Composite Structures 32 (6):795–806. doi: 10.12989/scs.2019.32.6.795.
  • Daya, E. M., L. Azrar, and M. P. Ferry. 2004. An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams. Journal of Sound and Vibration 271 (3–5):789–813. doi: 10.1016/S0022-460X(03)00754-5.
  • Demir, E. 2016. A study on natural frequencies and damping ratios of composite beams with holes. Steel and Composite Structures 21 (6):1211–26. doi: 10.12989/scs.2016.21.6.1211.
  • Demir, E. 2017. Vibration and damping behaviors of symmetric layered functional graded sandwich beams. Structural Engineering and Mechanics: An International Journal 62 (6):771–80. doi: 10.12989/sem.2017.62.6.771.
  • Mahi, A. E., M. Assarar, Y. Sefrani, and J.-M. Berthelot. 2008. Damping analysis of orthotropic composite materials and laminates. Composites Part B: Engineering 39 (7–8):1069–76. doi: 10.1016/j.compositesb.2008.05.003.
  • Emam, S. A., and A. H. Nayfeh. 2009. Postbuckling and free vibrations of composite beams. Composite Structures 88 (4):636–42. doi: 10.1016/j.compstruct.2008.06.006.
  • Fadaee, M. 2019. Exact solution for shear deformable model of free damped vibration of magnetorheological fluid sandwich beam. Mechanics Based Design of Structures and Machines 47 (5):568–82. doi: 10.1080/15397734.2019.1581798.
  • Farshid, B., M. Parviz, R. Mohammad, and H. Golbahar. 2022. Large amplitude vibration of sandwich beams with GPLRC face sheets and porous core under moving load. Mechanics Based Design of Structures and Machines 1–24. doi: 10.1080/15397734.2022.2156884.
  • Feng, J., B. Safaei, Z. Qin, and F. Chu. 2023. Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Composites Science and Technology 233:109925.
  • Gibson, R. F., and R. Plunkett. 1977. Dynamic stiffness and damping of fiber-reinforced composite materials. The Shock and Vibration Digest 9 (2):9–17. doi: 10.1177/058310247700900205.
  • Gibson, R. F., and D. G. Wilson. 1979. Dynamic mechanical properties of fiber-reinforced composite materials. The Shock and Vibration Digest 11 (10):3–11. doi: 10.1177/058310247901101001.
  • Hyer, M. W., W. J. Anderson, and R. A. Scott. 1978. Nonlinear vibrations of three-layer beam with viscoelastic core II: Experiment. Journal of Sound and Vibration 61 (1):25–30. doi: 10.1016/0022-460X(78)90038-X.
  • Kapuria, S., P. C. Dumir, and N. K. Jain. 2004. Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams. Composite Structures 64 (3–4):317–27. doi: 10.1016/j.compstruct.2003.08.013.
  • Khatua, T. P., and Y. K. Cheung. 1973. Bending and Vibration of multilayer sandwich beams and plates. International Journal for Numerical Methods in Engineering 6 (1):11–24. doi: 10.1002/nme.1620060103.
  • Koizumi, M. 1997. FGM activities in Japan. Composites Part B: Engineering 28 (1–2):1–4. doi: 10.1016/S1359-8368(96)00016-9.
  • Kolahchi, R., M. S. Zarei, M. H. Hajmohammad, and A. N. Oskouei. 2017a. Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods. Thin-Walled Structures 113:162–9. doi: 10.1016/j.tws.2017.01.016.
  • Kolahchi, R., M. S. Zarei, M. H. Hajmohammad, and A. Nouri. 2017b. Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. International Journal of Mechanical Sciences 130:534–45. doi: 10.1016/j.ijmecsci.2017.06.039.
  • Kovac, E. J., W. J. Anderson, and R. A. Scott. 1971. Forced non-linear vibration of damped sandwich beam. Journal of Sound and Vibration 17 (1):25–39. doi: 10.1016/0022-460X(71)90131-3.
  • Mehar, K., S. K. Panda, A. Dehengia, and V. R. Kar. 2016. Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment. Journal of Sandwich Structures & Materials 18 (2):151–73. doi: 10.1177/1099636215613324.
  • Meksi, A., H. Youzera, S. M. Sadoun, A. Abbache, S. A. Meftah, A. Tounsi, and H. Muzamal. 2022. The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams. Steel and Composite Structures 44 (1):81–9. doi: 10.12989/scs.2022.44.1.081.
  • Melo, J. D. D., and D. W. Radford. 2003. Viscoelastic characterization of transversely isotropic composite laminate. Journal of Composite Materials 37 (2):129–45. doi: 10.1106/002199803028990.
  • Rao, M. K. 1978. Frequency and loss factors of sandwich beams under various boundary conditions. Journal of Mechanical Engineering Science 20 (5):271–82. doi: 10.1243/JMES_JOUR_1978_020_047_02.
  • Rao, M. K., and Y. M. Desai. 2004. Analytical solutions for vibrations of laminated and sandwich plates using mixed theory. Composite Structures 63 (3–4):361–73. doi: 10.1016/S0263-8223(03)00185-5.
  • Rao, M. K., K. Scherbatiuk, Y. M. Desai, and A. H. Shah. 2004. Natural vibrations of laminated and sandwich plates. Journal of Engineering Mechanics 130 (11):1268–78. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1268).
  • Reddy, J. N. 1984. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics 51 (4):745–52. doi: 10.1115/1.3167719.
  • Rezaiee-Pajand, M., E. Sobhani, and A. R. Masoodi. 2022. Vibrational behavior of exponentially graded joined conical-conical shells. Steel and Composite Structures 43 (5):603–23.
  • Rikards, R. 1993. Finite element analysis of vibration and damping of laminated composites. Composite Structures 24 (3):193–204. doi: 10.1016/0263-8223(93)90213-A.
  • Sobhani, E. 2023. Vibrational characteristic simulations regarding connecting two different semi-spheroidal shells and a full-spheroidal shell with a conical shell categorized in underwater structures. Ocean Engineering 276:114252. doi: 10.1016/j.oceaneng.2023.114252.
  • Sobhani, E., A. R. Masoodi, Ö. Civalek, and A. R. Ahmadi-Pari. 2023a. Free-damped vibration tangential wave responses of FG-sandwich merged hemispherical-cylindrical shells under effects of artificial springs at merging and boundary conditions. Engineering Structures 284:115958. doi: 10.1016/j.engstruct.2023.115958.
  • Sobhani, E., M. Koohestani, Ö. Civalek, and M. Avcar. 2023b. Natural frequency investigation of graphene oxide powder nanocomposite cylindrical shells surrounded by Winkler/Pasternak/Kerr elastic foundations with a focus on various boundary conditions. Engineering Analysis with Boundary Elements 149:38–51. doi: 10.1016/j.enganabound.2023.01.012.
  • Sobhani, E., A. R. Masoodi, R. Dimitri, and F. Tornabene. 2023c. Free vibration of porous graphene oxide powder nano-composites assembled paraboloidal-cylindrical shells. Composite Structures 304:116431. doi: 10.1016/j.compstruct.2022.116431.
  • Timoshenko, S. P. 1922. On the transverse vibrations of bars of uniform cross-section. London, Edinburgh, Dublin Philosophical Magazine and Journal of Science 43 (253):125–31. doi: 10.1080/14786442208633855.
  • Thai, C. H., H. Nguyen-Xuan, N. Nguyen-Thanh, T. H. Le, T. Nguyen-Thoi, and T. Rabczuk. 2012. Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS based isogeometric approach. International Journal for Numerical Methods in Engineering 91 (6):571–603. doi: 10.1002/nme.4282.
  • Touratier, M. 1991. An efficient standard plate theory. International Journal of Engineering Science. 29 (8):901–16. doi: 10.1016/0020-7225(91)90165-Y.
  • Wang, Y., C. Ye, and J. Zu. 2018. Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities. Applied Mathematics and Mechanics 39 (11):1587–604. doi: 10.1007/s10483-018-2388-6.
  • Wang, Y. Q., and H. L. Zhao. 2019. Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Archive of Applied Mechanics 89 (11):2335–49. doi: 10.1007/s00419-019-01579-0.
  • Wang, Y. Q., Y. H. Wan, and Y. F. Zhang. 2017. Vibrations of longitudinally traveling functionally graded material plates with porosities. European Journal of Mechanics – A/Solids 66:55–68. doi: 10.1016/j.euromechsol.2017.06.006.
  • Ye, C. Y., and Q. Wang. 2021. Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells internal resonances. Nonlinear Dynamics 104 (3):2051–69. doi: 10.1007/s11071-021-06401-7.
  • Youzera, H., and S. A. Meftah. 2017. Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress. Composite Structures 179:258–68. doi: 10.1016/j.compstruct.2017.07.038.
  • Youzera, H., S. A. Meftah, and E. M. Daya. 2017. Superharmonic resonance of cross-ply laminates by the method of multiple scales. Journal of Computational and Nonlinear Dynamics 12 (5):054503. doi: 10.1115/1.4036914.
  • Youzera, H., S. A. Meftah, N. Challamel, and A. Tounsi. 2012. Nonlinear damping and forced vibration analysis of laminated composite beams. Composites Part B: Engineering 43 (3):1147–54. doi: 10.1016/j.compositesb.2012.01.008.
  • Youzera, H., S. A. Meftah, M. M. Selim, A, and Tounsi, A. 2022. Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment. Mechanics of Advanced Materials and Structures 29 (27):6436–50. doi: 10.1080/15376494.2021.1979140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.