126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Geometrically nonlinear dynamic analysis of a damped porous microplate resting on elastic foundations under in-plane nonuniform excitation

, , &
Pages 4553-4598 | Received 30 Jan 2023, Accepted 26 Jun 2023, Published online: 13 Jul 2023

References

  • Afshari, H., and N. Adab. 2022. Size-dependent buckling and vibration analyzes of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mechanics Based Design of Structures and Machines 50 (1):184–205. doi:10.1080/15397734.2020.1713158.
  • Ansari, R., M. A. Ashrafi, and A. Arjangpay. 2015. An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory. Applied Mathematical Modelling 39 (10–11):3050–62. doi:10.1016/j.apm.2014.11.029.
  • Ansari, R., M. Faghih Shojaei, V. Mohammadi, R. Gholami, and M. A. Darabi. 2014. Nonlinear vibrations of functionally graded mindlin microplates based on the modified couple stress theory. Composite Structures 114:124–34. doi:10.1016/j.compstruct.2014.04.013.
  • Arefi, M., and M. Kiani. 2020. Magneto-electro-mechanical bending analysis of three-layered exponentially graded microplate with piezomagnetic face-sheets resting on Pasternak’s foundation via MCST. Mechanics of Advanced Materials and Structures 27 (5):383–95. doi:10.1080/15376494.2018.1473538.
  • Arefi, M., and T. Rabczuk. 2019. A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell. Composites Part B 168 (February):496–510. doi:10.1016/j.compositesb.2019.03.065.
  • Ashby, M. F. 1970. The deformation of plastically non-homogeneous materials. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 21 (170):399–424. doi:10.1080/14786437008238426.
  • Babu, B., and B. P. Patel. 2019a. Analytical solution for strain gradient elastic Kirchhoff rectangular plates under transverse static loading. European Journal of Mechanics - A/Solids 73:101–11. doi:10.1016/j.euromechsol.2018.07.007.
  • Babu, B., and B. P. Patel. 2019b. A new computationally efficient finite element formulation for nanoplates using second-order strain gradient Kirchhoff’s plate theory. Composites Part B: Engineering 168 (August):302–11. doi:10.1016/j.compositesb.2018.12.066.
  • Baferani, A. H., A. R. Saidi, and H. Ehteshami. 2011. Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Composite Structures 93 (7):1842–53. doi:10.1016/j.compstruct.2011.01.020.
  • Bajkowski, J., and W. Szemplińska-Stupnicka. 1986. Internal resonances effects—simulation versus analytical methods results. Journal of Sound and Vibration 104 (2):259–75. doi:10.1016/0022-460X(86)90267-1.
  • Bashir, R., A. Gupta, G. W. Neudeck, M. McElfresh, and R. Gomez. 2000. On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. Journal of Micromechanics and Microengineering 10 (4):483–91. doi:10.1088/0960-1317/10/4/301.
  • Behera, L., and S. Chakraverty. 2017. Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: a review. Archives of Computational Methods in Engineering 24 (3):481–94. doi:10.1007/s11831-016-9179-y%0A.
  • Carr, D. W., and H. G. Craighead. 1997. Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15 (6):2760. doi:10.1116/1.589722.
  • Chen, W., C. Weiwei, and K. Y. Sze. 2012. A model of composite laminated reddy beam based on a modified couple-stress theory. Composite Structures 94 (8):2599–2609. doi:10.1016/j.compstruct.2012.02.020.
  • Darijani, H., and H. Mohammadabadi. 2014. A new deformation beam theory for static and dynamic analysis of microbeams. International Journal of Mechanical Sciences 89 (3):31–9. doi:10.1016/j.ijmecsci.2014.08.019.
  • Darvishvand, A., and A. Zajkani. 2021. Strain gradient micromechanical modelling of substrate – supported crystalline microplates subjected to permanent in-plane and out-of-plane tractions. Mechanics Based Design of Structures and Machines 49 (7):969–85. doi:10.1080/15397734.2019.1705167.
  • Das, D. 2019. Nonlinear forced vibration analysis of higher order shear-deformable functionally graded microbeam resting on nonlinear elastic foundation based on modified couple stress theory. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233 (9):1773–90. doi:10.1177/1464420718789716.
  • Ebrahimi, F., M. R. Barati, and Ö. Civalek. 2020. Application of Chebyshev – Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Engineering with Computers 36 (3):953–64. doi:10.1007/s00366-019-00742-z.
  • Farokhi, H., M. H. Ghayesh, and M. Amabili. 2013. Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. International Journal of Engineering Science 68:11–23. doi:10.1016/j.ijengsci.2013.03.001.
  • Fleck, N. A., G. M. Muller, M. F. Ashby, and J. W. Hutchinson. 1994. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia 42 (2):475–87. doi:10.1016/0956-7151(94)90502-9.
  • Ghayesh, M. H. 2019. Mechanics of viscoelastic functionally graded microcantilevers. European Journal of Mechanics - A/Solids 73 (January):492–9. doi:10.1016/j.euromechsol.2018.09.001.
  • Ghayesh, M. H., H. Farokhi, and M. Amabili. 2013. Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Composites Part B: Engineering 50:318–24. doi:10.1016/j.compositesb.2013.02.021.
  • Ghayesh, M. H., M. Amabili, and H. Farokhi. 2013. Three-dimensional nonlinear size-dependent behaviour of timoshenko microbeams. International Journal of Engineering Science 71 (October):1–14. doi:10.1016/j.ijengsci.2013.04.003.
  • Gholami, R., and R. Ansari. 2016. A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates. Nonlinear Dynamics 84 (4):2403–22. doi:10.1007/s11071-016-2653-0.
  • Haque, M. A., and M. T. Saif. 2003. Strain gradient effect in nanoscale thin films. Acta Materialia 51 (11):3053–61. doi:10.1016/S1359-6454(03)00116-2.
  • Hayashi, I., M. Sato, and M. Kuroda. 2011. Strain hardening in bent copper foils. Journal of the Mechanics and Physics of Solids 59 (9):1731–51. doi:10.1016/j.jmps.2011.06.001.
  • Hung, P. T., P. Phung-Van, and C. H. Thai. 2022. A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory. Composite Structures 289 (June):115467. doi:10.1016/j.compstruct.2022.115467.
  • Hutchinson, J. W. 2000. Plasticity at the micron scale. International Journal of Solids and Structures 37 (1–2):225–38. doi:10.1016/S0020-7683(99)00090-6.
  • Karamanli, A., M. Aydogdu, and T. P. Vo. 2021. A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model. Aerospace Science and Technology 111:106550. doi:10.1016/j.ast.2021.106550.
  • Karamanli, A., and T. P. Vo. 2020. Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Composite Structures 246 (February):112401. doi:10.1016/j.compstruct.2020.112401.
  • Karamanli, A., and T. P. Vo. 2021. A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. Composite Structures 257 (July):113066. doi:10.1016/j.compstruct.2020.113066.
  • Karimipour, I., Y. T. Beni, and A. H. Akbarzadeh. 2019. Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates. Communications in Nonlinear Science and Numerical Simulation 78:104856. doi:10.1016/j.cnsns.2019.104856.
  • Khaniki, H. B., M. H. Ghayesh, and M. Amabili. 2021. A review on the statics and dynamics of electrically actuated nano and micro structures. International Journal of Non-Linear Mechanics 129 (March):103658. doi:10.1016/j.ijnonlinmec.2020.103658.
  • Kitazono, K., E. Sato, and K. Kuribayashi. 2004. Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding. Scripta Materialia 50 (4):495–8. doi:10.1016/j.scriptamat.2003.10.035.
  • Lam, D. C. C., F. Yang, A. C. M. Chong, J. Wang, and P. Tong. 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51 (8):1477–508. doi:10.1016/S0022-5096(03)00053-X.
  • Lau, S. L., and Y. K. Cheung. 1981. Amplitude incremental variational principle for nonlinear vibration of elastic systems. Journal of Applied Mechanics 48 (4):959–64. doi:10.1115/1.3157762.
  • Li, C., S. K. Lai, and X. Yang. 2019. On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter. Applied Mathematical Modelling 69 (May):127–41. doi:10.1016/j.apm.2018.12.010.
  • Li, Q., Q. Wang, D. Wu, X. Chen, Y. Yu, and W. Gao. 2019. Geometrically nonlinear dynamic analysis of organic solar cell resting on Winkler-Pasternak elastic foundation under thermal environment. Composites Part B: Engineering 163 (April):121–9. doi:10.1016/j.compositesb.2018.11.022.
  • Linnemann, R., T. Gotszalk, I. W. Rangelow, P. Dumania, and E. Oesterschulze. 1996. Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers atomic force microscopy and lateral force microscopy using piezoresistive cantilevers *. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14 (2):856–60. doi:10.1116/1.589161.
  • Liu, C., L. L. Ke, Y. S. Wang, J. Yang, and S. Kitipornchai. 2014. Buckling and post-buckling of size-dependent piezoelectric timoshenko nanobeams subject to thermo-electro-mechanical loadings. International Journal of Structural Stability and Dynamics 14 (03):1350067. doi:10.1142/S0219455413500673.
  • Liu, D., Y. He, D. J. Dunstan, B. Zhang, Z. Gan, P. Hu, and H. Ding. 2013. Toward a further understanding of size effects in the torsion of thin metal wires: an experimental and theoretical assessment. International Journal of Plasticity 41:30–52. doi:10.1016/j.ijplas.2012.08.007.
  • Loghman, E., F. Bakhtiari-Nejad, A. Kamali E, M. Abbaszadeh, and M. Amabili. 2021. Nonlinear vibration of fractional viscoelastic micro-beams. International Journal of Non-Linear Mechanics 137:103811. doi:10.1016/j.ijnonlinmec.2021.103811.
  • Mirjavadi, S. S., B. M. Afshari, M. R. Barati, and A. M. Hamouda. 2019. Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection. Microsystem Technologies 25 (8):3137–50. doi:10.1007/S00542-018-4277-4/FIGURES/9.
  • Mirsalehi, M., M. Azhari, and H. Amoushahi. 2015. Stability of thin FGM microplate subjected to mechanical and thermal loading based on the modified couple stress theory and spline finite strip method. Aerospace Science and Technology 47:356–66. doi:10.1016/j.ast.2015.10.001.
  • Mirsalehi, M., M. Azhari, and H. Amoushahi. 2017. Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method. European Journal of Mechanics - A/Solids 61:1–13. doi:10.1016/j.euromechsol.2016.08.008.
  • Miyoshi, T., M. Itoh, S. Akiyama, and A. Kitahara. 1998. Aluminum Foam, ‘ALPORAS’: The Production Process, Properties and Applications. Materials Research Society Symposium - Proceedings 521. MRS: 133–7. doi:10.1557/PROC-521-133.
  • Mohamad, A. A. 2005. Combustion in porous media: fundamentals and applications. In Transport Phenomena in Porous Media III. Oxford, UK: Elsevier, 287–304. doi:10.1016/B978-008044490-1/50015-6.
  • Mustafa, J., S. Alqaed, and M. Sharifpur. 2022. Enhancing the energy and exergy performance of a photovoltaic thermal system with ∇-shape collector using porous metal foam. Journal of Cleaner Production 368 (September):133121. doi:10.1016/j.jclepro.2022.133121.
  • Nakajima, H. 2007. Fabrication, properties and application of porous metals with directional pores. Progress in Materials Science 52 (7):1091–173. doi:10.1016/j.pmatsci.2006.09.001.
  • Nateghi, A., and M. Salamat-Talab. 2013. Thermal effect on size dependent behaviour of functionally graded microbeams based on modified couple stress theory. Composite Structures 96:97–110. doi:10.1016/j.compstruct.2012.08.048.
  • Pasternak, P. L. 1954. New method of calculation for flexible substructures on two-parameter elastic foundation. Gasudarstvennoe Izdatelstoo. Literatury Po Stroitelstvu I Architekture 1:56.
  • Qiu, J., S. Sahmani, and B. Safaei. 2023. On the NURBS-based isogeometric analysis for couple stress-based nonlinear instability of PFGM microplates. Mechanics Based Design of Structures and Machines 51 (2):816–40. doi:10.1080/15397734.2020.1853567.
  • Reddy, J. N., and C. F. Liu. 1985. A higher-order shear deformation theory of laminated elastic shells. International Journal of Engineering Science 23 (3):319–30. doi:10.1016/0020-7225(85)90051-5.
  • Reddy, J. N., and J. Kim. 2012. A nonlinear modified couple stress-based third-order theory of functionally graded plates. Composite Structures 94 (3):1128–43. doi:10.1016/j.compstruct.2011.10.006.
  • Roudbari, M. A., T. D. Jorshari, C. Lü, R. Ansari, A. Z. Kouzani, and M. Amabili. 2022. A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Walled Structures 170 (January):108562. doi:10.1016/j.tws.2021.108562.
  • Rudd, R. E., and J. Q. Broughton. 1998. Coarse-grained molecular dynamics and the atomic limit of finite elements. Physical Review B 58 (10):R5893–R5896. doi:10.1103/PhysRevB.58.R5893.
  • Sahmani, S., and D. M. Madyira. 2021. Nonlocal strain gradient nonlinear primary resonance of micro/nano-beams made of GPL reinforced FG porous nanocomposite materials. Mechanics Based Design of Structures and Machines 49 (4):553–80. doi:10.1080/15397734.2019.1695627.
  • Shahmohammadi, M. A., M. Azhari, H. Salehipour, and H.-T. Thai. 2023. Buckling of multilayered CNT/GPL/fibre/polymer hybrid composite plates resting on elastic support using modified nonlocal first-order plate theory. Mechanics Based Design of Structures and Machines 1–26. doi:10.1080/15397734.2022.2164301.
  • Şimşek, M., M. Aydın, H. H. Yurtcu, and J. N. Reddy. 2015. Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mechanica 226 (11):3807–22. doi:10.1007/s00707-015-1437-9.
  • Şimşek, M. 2014. Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Composite Structures 112 (1):264–72. doi:10.1016/j.compstruct.2014.02.010.
  • Singh, V., R. Kumar, and S. N. Patel. 2021. Non-linear vibration and instability of multi-phase composite plate subjected to non-uniform in-plane parametric excitation: semi-analytical investigation. Thin-Walled Structures 162 (May):107556. doi:10.1016/j.tws.2021.107556.
  • Sobhy, M., and A. M. Zenkour. 2020. A comprehensive study on the size-dependent hygrothermal analysis of exponentially graded microplates on elastic foundations. Mechanics of Advanced Materials and Structures 27 (10):816–30. doi:10.1080/15376494.2018.1499986.
  • Soldatos, K. P. 1991. A refined laminated plate and shell theory with applications. Journal of Sound and Vibration 144 (1):109–29. doi:10.1016/0022-460X(91)90736-4.
  • Song, M., Y. Gong, J. Yang, W. Zhu, and S. Kitipornchai. 2020. Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments. Journal of Sound and Vibration 468 (March):115115. doi:10.1016/j.jsv.2019.115115.
  • Stölken, J. S., and A. G. Evans. 1998. A microbend test method for measuring the plasticity length scale. Acta Materialia 46 (14):5109–15. doi:10.1016/S1359-6454(98)00153-0.
  • Subbaraj, K., and M. A. Dokainish. 1989. A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Computers & Structures 32 (6):1387–401. doi:10.1016/0045-7949(89)90315-5.
  • Swaminathan, K., S. Hirannaiah, and T. Rajanna. 2022. Vibration and stability characteristics of functionally graded sandwich plates with/without porosity subjected to localized edge loadings. Mechanics Based Design of Structures and Machines 1–39. doi:10.1080/15397734.2022.2038619.
  • Thai, C. H., A. J. M. Ferreira, and P. Phung-van. 2020. Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory. Engineering Analysis with Boundary Elements 117 (June):284–98. doi:10.1016/j.enganabound.2020.05.003.
  • Tien, D. M., D. V. Thom, P. V. Minh, N. C. Tho, T. N. Doan, and D. N. Mai. 2023. The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates. Mechanics Based Design of Structures and Machines 1–23. doi:10.1080/15397734.2023.2186893.
  • Tortonese, M. 1997. Cantilevers and tips for atomic force microscopy. IEEE Engineering in Medicine and Biology Magazine : The Quarterly Magazine of the Engineering in Medicine & Biology Society 16 (2):28–33. doi:10.1109/51.582173.
  • Tsiatas, G. C., and A. J. Yiotis. 2015. Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory : comparison with the nonlocal elasticity theory. Acta Mechanica 226 (4):1267–81. doi:10.1007/s00707-014-1249-3.
  • Vahdat, M., F. Ashenai Ghasemi, and M. Mosayyebi. 2022. Strain gradient vibration analysis of piezoelectric composite microplate reinforced with FG-GPLs based on sinusoidal shear deformation theory. Mechanics Based Design of Structures and Machines 1–29. doi:10.1080/15397734.2022.2081976.
  • Wang, B., S. Zhou, J. Zhao, and X. Chen. 2011. A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. European Journal of Mechanics - A/Solids 30 (4):517–24. doi:10.1016/j.euromechsol.2011.04.001.
  • Wang, Y. G., W. H. Lin, C. L. Zhou, and R. X. Liu. 2015. Thermal postbuckling and free vibration of extensible microscale beams based on modified couple stress theory. Journal of Mechanics 31 (1):37–46. doi:10.1017/jmech.2014.47.
  • Wang, Y. G., W. H. Lin, and N. Liu. 2013. Nonlinear free vibration of a microscale beam based on modified couple stress theory. Physica E: Low-Dimensional Systems and Nanostructures 47:80–5. doi:10.1016/j.physe.2012.10.020.
  • Wang, Y.-G., W.-H. Lin, and N. Liu. 2015. Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Applied Mathematical Modelling 39 (1):117–27. doi:10.1016/j.apm.2014.05.007.
  • Winkler, E. 1867. Die Lehre von Elastizitat Und Festigkeit (The Theory of Elasticity and Stiffness). Prague: H. Domenicus.
  • Yang, F., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi:10.1016/S0020-7683(02)00152-X.
  • Yang, Q., and C. W. Lim. 2012. Thermal effects on buckling of shear deformable nanocolumns with von Kármán nonlinearity based on nonlocal stress theory. Nonlinear Analysis: Real World Applications 13 (2):905–22. doi:10.1016/j.nonrwa.2011.08.026.
  • Yazdi, N., and K. Najafi. 1997. All-silicon single-wafer fabrication technology for precision microaccelerometers. In International Conference on Solid-State Sensors and Actuators, Proceedings 2. IEEE: 1181–1184. doi:10.1109/SENSOR.1997.635416.
  • Zargar Ershadi, M., M. Faraji Oskouie, and R. Ansari. 2022. Nonlinear vibration analysis of functionally graded porous circular plates under hygro-thermal loading. Mechanics Based Design of Structures and Machines 1–18. doi:10.1080/15397734.2022.2134147.
  • Zhang, X., Y. Qian, Y. Zhu, and K. Tang. 2014. Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance. Nanoscale 6 (3):1725–31. doi:10.1039/C3NR05551E.
  • Jing, By Z., J. Zhan, J. H. Zhan, and Z. H. Jing. 2008. Fabrication and gas-sensing properties of porous ZnO nanoplates. Advanced Materials 20 (23):4547–51. doi:10.1002/adma.200800243.
  • Zuo, D., S. Sahmani, B. Safaei, and G. Ma. 2021. Influence of couple stress size dependency in thermal instability of porous functionally graded composite microplates having different central cutouts. Waves in Random and Complex Media 1–30. doi:10.1080/17455030.2021.2003474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.