117
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Improved delayed detached eddy simulation-based investigation of aerodynamic performance and flow field characteristics of high-speed trains with plate brakes

, , , , &
Pages 4599-4615 | Received 28 Dec 2022, Accepted 23 Jun 2023, Published online: 12 Jul 2023

References

  • Benim, A., A. Nahavandi, and K. Syed. 2005. URANS and LES analysis of turbulent swirling flows. Progress in Computational Fluid Dynamics, an International Journal 5 (8):444–54. doi:10.1504/PCFD.2005.007680.
  • Broniszewski, J., and J. Piechna. 2019. A fully coupled analysis of unsteady aerodynamics impact on vehicle dynamics during braking. Engineering Applications of Computational Fluid Mechanics 13 (1):623–41. doi:10.1080/19942060.2019.1616326.
  • BS EN 14067-6 2010. Railway applications Aerodynamics-Part 6: Requirements and test procedures for cross wind assessment.
  • Cheng, F., X. Xiong, M. Tang, X. Li, and X. Wang. 2022. Impact of the gap distance between two adjacent external windshields of a high-speed train on surrounding flow characteristics: An IDDES study. Engineering Applications of Computational Fluid Mechanics 16 (1):724–45. doi:10.1080/19942060.2022.2046168.
  • Corson, D., R. Jaiman, and F. Shakib. 2009. Industrial application of RANS modelling: Capabilities and needs. International Journal of Computational Fluid Dynamics 23 (4):337–47. doi:10.1080/10618560902776810.
  • Du, J., X. Liang, G. Li, H. Tian, and M. Yang. 2020. Numerical simulation of rainwater accumulation and flow characteristics over windshield of high-speed trains. Journal of Central South University 27 (1):198–209. doi:10.1007/s11771-020-4288-z.
  • Gao, L., Y. Xi, G. Wang, J. Zuo, and M. Wu. 2015. CFD-based study on aerodynamic brake wind-panel forms for high-speed trfferain. Chinese Journal of Construction Machinery 13 (3):236–41.
  • Gao, L., Y. Xi, G. Wang, and J. Zuo. 2016. Opening angle rules of the aerodynamic brake panel. Journal of Donghua University (English Edition) 33 (1):20–4.
  • Gritskevich, M., A. Garbaruk, J. Schütze, and F. Menter. 2012. Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion 88 (3):431–49. doi:10.1007/s10494-011-9378-4.
  • Heinz, S. 2020. A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications. Progress in Aerospace Sciences 114:100597. doi:10.1016/j.paerosci.2019.100597.
  • He, K., X. Su, G. Gao, and S. Krajnović. 2022. Evaluation of LES, IDDES and URANS for prediction of flow around a streamlined high-speed train. Journal of Wind Engineering and Industrial Aerodynamics 223:104952. doi:10.1016/j.jweia.2022.104952.
  • Han, S., J. Zhang, X. Xiong, P. Ji, L. Zhang, J. Sheridan, and G. Gao. 2022. Influence of high-speed maglev train speed on tunnel aerodynamic effects. Building and Environment 223:109460. doi:10.1016/j.buildenv.2022.109460.
  • Li, T., D. Qin, N. Zhou, J. Zhang, and W. Zhang. 2022a. Numerical study on the aerodynamic and acoustic scale effects for high-speed train body and pantograph. Applied Acoustics 2022, 196:108886. doi:10.1016/j.apacoust.2022.108886.
  • Li, T., D. Qin, N. Zhou, and W. Zhang. 2022b. Step-by-step numerical prediction of aerodynamic noise generated by high speed trains. Chinese Journal of Mechanical Engineering 35 (1):28. doi:10.1186/s10033-022-00705-4.
  • Liu, H., S. Zhang, X. Liang, and Y. Zou. 2022. The effect of covering structure in pantograph sinking platform on the aerodynamics of high-speed train. Engineering Applications of Computational Fluid Mechanics 16 (1):2157–75. doi:10.1080/19942060.2022.2133517.
  • Keating, A., G. De Prisco, and U. Piomelli. 2006. Interface conditions for hybrid RANS/LES calculations. International Journal of Heat and Fluid Flow 27 (5):777–88. doi:10.1016/j.ijheatfluidflow.2006.03.007.
  • Khier, W., M. Breuer, and F. Durst. 2000. Flow structure around trains under side wind conditions: A numerical study. Computers & Fluids 29 (2):179–95. doi:10.1016/S0045-7930(99)00008-0.
  • Kurec, K., M. Remer, T. Mayer, S. Tudruj, and J. Piechna. 2019a. Flow control for a car-mounted rear wing. International Journal of Mechanical Sciences 152:384–99. doi:10.1016/j.ijmecsci.2018.12.034.
  • Kurec, K., M. Remer, and J. Piechna. 2019b. The influence of different aerodynamic setups on enhancing a sports car’s braking. International Journal of Mechanical Sciences 164:105140. doi:10.1016/j.ijmecsci.2019.105140.
  • Kazumasa, O., and Y. Masafumi. 1989. Development of aerodynamic brake of maglev vehicle for emergency use. Quarterly Report of Railway Technical Research Institute 37 (2):60–5.
  • Munoz-Paniagua, J., J. García, and B. Lehugeur. 2017. Evaluation of RANS, SAS and IDDES models for the simulation of the flow around a high-speed train subjected to crosswind. Journal of Wind Engineering and Industrial Aerodynamics 171:50–66. doi:10.1016/j.jweia.2017.09.006.
  • Niu, J., Y. Wang, D. Wu, and F. Liu. 2020a. Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train. Engineering Applications of Computational Fluid Mechanics 14 (1):655–68. doi:10.1080/19942060.2020.1756414.
  • Niu, J., Y. Wang, and D. Zhou. 2019. Effect of the outer windshield schemes on aerodynamic characteristics around the car-connecting parts and train aerodynamic performance. Mechanical Systems and Signal Processing 130:1–16. doi:10.1016/j.ymssp.2019.05.001.
  • Niu, J., Y. Wang, F. Liu, and R. Li. 2021a. Aerodynamic behavior of a high-speed train with a braking plate mounted in the region of inter-car gap or uniform-car body: A comparative numerical study. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 235 (7):815–26. doi:10.1177/0954409720965821.
  • Niu, J., Y. Wang, F. Liu, and Z. Chen. 2020b. Comparative study on the effect of aerodynamic braking plates mounted at the inter-carriage region of a high-speed train with pantograph and air-conditioning unit for enhanced braking. Journal of Wind Engineering and Industrial Aerodynamics 206:104360. doi:10.1016/j.jweia.2020.104360.
  • Niu, J., Y. Wang, F. Liu, and R. Li. 2021b. Numerical study on the effect of a downstream braking plate on the detailed flow field and unsteady aerodynamic characteristics of an upstream braking plate with or without a crosswind. Vehicle System Dynamics 59 (5):657–74. doi:10.1080/00423114.2019.1708959.
  • Puharić, M., S. Linić, D. Matić, and V. Lučanin. 2011. Determination of braking force of aerodynamic brakes for high speed trains. Transactions of Famena 35 (3):57–66.
  • Puharić, M., D. Matić, S. Linić, S. Ristić, and V. Lučanin. 2014. Determination of braking force on the aerodynamic brake by numerical simulations. FME Transactions 42 (2):106–11.
  • Rodi, W. 1997. Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics 69-71:55–75. doi:10.1016/S0167-6105(97)00147-5.
  • Sawada, K. 1996. Development of magnetically levitated high speed transport system in Japan. IEEE Transactions on Magnetics 32 (4):2230–5. doi:10.1109/20.508609.
  • Shur, M., P. Spalart, M. Strelets, and K. Travin. 2008. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow 29 (6):1638–49. doi:10.1016/j.ijheatfluidflow.2008.07.001.
  • Takami, H. 2013. Development of small-sized aerodynamic brake for high-speed railway. Transactions of the Japan Society of Mechanical Engineers Series B 79 (803):1254–63. doi:10.1299/kikaib.79.1254.
  • Tian, C., M. Wu, W. Fei, and Q. Huang. 2011. Rule of aerodynamics braking force in longitudinal different position of high-speed train. Journal of Tongji University (Natural Science) 39 (5):705–9.
  • Tian, C., M. Wu, Y. Zhu, and W. Fei. 2012. Numerical simulation research on the arrangement of the aerodynamic braking plates in the train. China Railway Science 33 (3):100–3.
  • Tian, H. 2019. Review of research on high-speed railway aerodynamics in China. Transportation Safety and Environment 1 (1):1–21. doi:10.1093/tse/tdz014.
  • Wang, J., G. Minelli, T. Dong, K. He, and S. Krajnović. 2020. Impact of the bogies and cavities on the aerodynamic behaviour of a high-speed train. An IDDES study. Journal of Wind Engineering and Industrial Aerodynamics 207:104406. doi:10.1016/j.jweia.2020.104406.
  • Wu, M., Y. Zhu, C. Tian, and W. Fei. 2011. Influence of aerodynamic braking on the pressure wave of a crossing high-speed train. Journal of Zhejiang University-Science A 12 (12):979–84. doi:10.1631/jzus.A11GT011.
  • Walters, D., S. Bhushan, M. Alam, and D. Thompson. 2013. Investigation of a dynamic hybrid RANS/LES modelling methodology for finite-volume CFD simulations. Flow, Turbulence and Combustion 91 (3):643–67. doi:10.1007/s10494-013-9481-9.
  • Wang, S., J. Bell, D. Burton, A. Herbst, J. Sheridan, and M. Thompson. 2017. The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream. Journal of Wind Engineering and Industrial Aerodynamics 165:46–57. doi:10.1016/j.jweia.2017.03.001.
  • Xi, Y., L. Gao, G. Wang, C. Tian, and M. Wu. 2015. Simulation design on the aerodynamic wind load test bed based on CFD. Journal of Machine Design 32 (9):12–8.
  • Xiao, M., and Y. Zhang. 2020. Assessment of the SST-IDDES with a shear-layer-adapted subgrid length scale for attached and separated flows. International Journal of Heat and Fluid Flow 85:108653. doi:10.1016/j.ijheatfluidflow.2020.108653.
  • Yoshimura, M., S. Saito, S. Hosaka, and H. Tsunoda. 2000. Characteristics of the aerodynamic brake of the vehicle on the Yamanashi Maglev test line. Quarterly Report of RTRI 41 (2):74–8. doi:10.2219/rtriqr.41.74.
  • Zuo, J., Z. Luo, and Z. Chen. 2014. Position control optimization of aerodynamic brake device for high-speed trains. Chinese Journal of Mechanical Engineering 27 (2):287–95. doi:10.3901/CJME.2014.02.287.
  • Zhang, J., Z. Guo, S. Han, S. Krajnović, J. Sheridan, and G. Gao. 2022. An IDDES study of the near-wake flow topology of a simplified heavy vehicle. Transportation Safety and Environment 4 (2):tdac015. doi:10.1093/tse/tdac015.
  • Zhai, Y., J. Niu, Y. Wang, F. Liu, and R. Li. 2020. Unsteady flow and aerodynamic behavior of high-speed train braking plates with and without crosswinds. Journal of Wind Engineering and Industrial Aerodynamics 206:104309. doi:10.1016/j.jweia.2020.104309.
  • Zuo, J., M. Wu, C. Tian, Y. Xi, Z. Luo, and Z. Chen. 2014. Aerodynamic braking device for high-speed trains: Design, Simulation and Experiment. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 228 (3):260–70.
  • Zhang, J., A. Adamu, X. Su, Z. Guo, and G. Gao. 2022. Effect of simplifying bogie regions on aerodynamic performance of high-speed train. Journal of Central South University 29 (5):1717–34. doi:10.1007/s11771-022-4948-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.