55
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Estimation of the static bending modulus of elasticity in glulam elements by ultrasound and modal-updating NDT techniques

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4642-4666 | Received 19 Feb 2023, Accepted 04 Jul 2023, Published online: 13 Jul 2023

References

  • Alkayem, N. F., M. Cao, and M. Ragulskis. 2019. Damage Localization in Irregular Shape Structures Using Intelligent FE Model Updating Approach with a New Hybrid Objective Function and Social Swarm Algorithm. Applied Soft Computing 83:105604. doi:10.1016/j.asoc.2019.105604.
  • Altunışık, A. C., F. Y. Okur, and V. Kahya. 2017. Modal Parameter Identification and Vibration Based Damage Detection of a Multiple Cracked Cantilever Beam. Engineering Failure Analysis 79:154–70. doi:10.1016/j.engfailanal.2017.04.026.
  • Altunışık, A. C., F. Y. Okur, S. Karaca, and V. Kahya. 2019. Vibration-Based Damage Detection in Beam Structures with Multiple Cracks: Modal Curvature vs. Modal Flexibility Methods. Nondestructive Testing and Evaluation 34 (1):33–53. doi:10.1080/10589759.2018.1518445.
  • Arriaga, F., C. Osuna-Sequera, I. Bobadilla, and M. Esteban. 2022. Prediction of the Mechanical Properties of Timber Members in Existing Structures Using the Dynamic Modulus of Elasticity and Visual Grading Parameters. Construction and Building Materials 322:126512. doi:10.1016/j.conbuildmat.2022.126512.
  • Barroso, L. R., and R. Rodriguez. 2004. Damage Detection Utilizing the Damage Index Method to a Benchmark Structure. Journal of Engineering Mechanics 130 (2):142–51. doi:10.1061/(asce)0733-9399(2004)130:2(142).
  • Bucur, V. 2006. Acoustics of Wood. Berlin Heidelberg: Springer.
  • Cavalli, A., L. Bevilacqua, G. Capecchi, D. Cibecchini, M. Fioravanti, G. Goli, M. Togni, and L. Uzielli. 2016. MOE and MOR Assessment of in Service and Dismantled Old Structural Timber. Engineering Structures 125:294–9. doi:10.1016/j.engstruct.2016.06.054.
  • Chen, H., and S. Li. 2022. Collinear Nonlinear Mixed-Frequency Ultrasound with FEM and Experimental Method for Structural Health Prognosis. Processes 10 (4):656. doi:10.3390/pr10040656.
  • Cuadrado, J., M. Zubizarreta, B. Pelaz, and I. Marcos. 2015. Methodology to Assess the Environmental Sustainability of Timber Structures. Construction and Building Materials 86:149–58. doi:10.1016/j.conbuildmat.2015.03.109.
  • Divós, F., and T. Tanaka. 2005. Relation Between Static and Dynamic Modulus of Elasticity of Wood. Acta Silvatica et Lignaria Hungarica 1 (January 2005):105–10.
  • Doebling, S. W., C. R. Farrar, and M. B. Prime. 1998. A Summary Review of Vibration-Based Damage Identification Methods. The Shock and Vibration Digest 30 (2):91–105. doi:10.1177/058310249803000201.
  • Ettelaei, A., M. Layeghi, H. Zarea Hosseinabadi, and G. Ebrahimi. 2019. Prediction of Modulus of Elasticity of Poplar Wood Using Ultrasonic Technique by Applying Empirical Correction Factors. Measurement 135:392–9. doi:10.1016/j.measurement.2018.11.076.
  • European Standard EN 1309-3 2018. 2018. Round and Sawn Timber. Methods of Measurements. Part 3: Features and Biological Degradations. Brussels.
  • European Standard EN 13183-2. 2002. Moisture Content of a Piece of Sawn Timber. Part 2: Estimation by Electrical Resistance Method. European Committee for Standardzation. Brussels.
  • European Standard EN 14081. 2020. Timber Structures. Strength Graded Structural Timber with Rectangular Cross Section. Brussels.
  • European Standard EN 384:2016 + A1. 2020. Structural Timber. Determination of Characteristic Values of Mechanical Properties and Density. European Committee for Standardzation. Brussels.
  • European Standard EN 408. 2011. Timber Structures. Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties. European Committee for Standardzation. Brussels.
  • Fathi, H., S. Kazemirad, and V. Nasir. 2021. Lamb Wave Propagation Method for Nondestructive Characterization of the Elastic Properties of Wood. Applied Acoustics 171:107565. doi:10.1016/j.apacoust.2020.107565.
  • Fernández-Serrano, Á., and A. Villasante. 2021. Longitudinal, Transverse and Ultrasound Vibration for the Prediction of Stiffness Using Models Incorporating Features in Pinus Sylvestris Timber. European Journal of Wood and Wood Products 79 (6):1541–50. doi:10.1007/s00107-021-01707-0.
  • Foster, R. M., and T. P. S. Reynolds. 2018. Lightweighting with Timber: An Opportunity for More Sustainable Urban Densification. Journal of Architectural Engineering 24 (1):1–4. doi:10.1061/(asce)ae.1943-5568.0000301.
  • Genç, A. F., V. Kahya, A. C. Altunışık, M. Günaydın, and C. Demirkır. 2021. Assessment of Modal Characteristics of Cross-Laminated Timber Beams Subject to Successive Damages. Archives of Civil and Mechanical Engineering 21:128. doi:10.1007/s43452-021-00288-2.
  • Haftka, R. T., and G. Zafer. 1992. Elements of Structural Optimization. The Netherlands: Kluwer Academic Publishers.
  • Hassan, K. T. S., P. Horáček, and J. Tippner. 2013. Evaluation of Stiffness and Strength of Scots Pine Wood Using Resonance Frequency and Ultrasonic Techniques. BioResources 8 (2):1634–45. doi:10.15376/biores.8.2.1634-1645.
  • Hu, H., B. T. Wang, C. H. Lee, and J. S. Su. 2006. Damage Detection of Surface Cracks in Composite Laminates Using Modal Analysis and Strain Energy Method. Composite Structures 74 (4):399–405. doi:10.1016/j.compstruct.2005.04.020.
  • Kabir, M. F., D. L. Schmoldt, and M. E. Schafer. 2002. Time Domain Ultrasonic Signal Characterization for Defects in Thin Unsurfaced Hardwood Lumber. Wood and Fiber Science 34 (1):165–82.
  • Kouroussis, G., L. Ben Fekih, and T. Descamps. 2017. Assessment of Timber Element Mechanical Properties Using Experimental Modal Analysis. Construction and Building Materials 134:254–61. doi:10.1016/j.conbuildmat.2016.12.081.
  • Kovryga, A., A. Khaloian Sarnaghi, and J. W. van de Kuilen. 2020. Strength Grading of Hardwoods Using Transversal Ultrasound. European Journal of Wood and Wood Products 78 (5):951–60. doi:10.1007/s00107-020-01573-2.
  • Liu, H., Z. Chen, Y. Liu, Y. Chen, Y. Du, and F. Zhou. 2023. Interfacial Debonding Detection for CFST Structures Using an Ultrasonic Phased Array: Application to the Shenzhen SEG Building. Mechanical Systems and Signal Processing 192:110214. doi:10.1016/j.ymssp.2023.110214.
  • López, G., L. A. Basterra, G. Ramón-Cueto, and A. D. Diego. 2014. Detection of Singularities and Subsurface Defects in Wood by Infrared Thermography. International Journal of Architectural Heritage 8 (4):517–36. doi:10.1080/15583058.2012.702369.
  • Lu, Z.-Q., W.-H. Liu, H. Ding, and L.-Q. Chen. 2022. Energy Transfer of an Axially Loaded Beam With a Parallel-Coupled Nonlinear Vibration Isolator. Journal of Vibration and Acoustics 144 (5):051009. doi:10.1115/1.4054324.
  • Lu, Z.-Q., D. H. Gu, H. Ding, W. Lacarbonara, and L. Q. Chen. 2020. Nonlinear Vibration Isolation via a Circular Ring. Mechanical Systems and Signal Processing 136:106490. doi:10.1016/j.ymssp.2019.106490.
  • Momohara, I., H. Sakai, and Y. Kubo. 2021. Comparison of Durability of Treated Wood Using Stake Tests and Survival Analysis. Journal of Wood Science 67:63. doi:10.1186/s10086-021-01996-2.
  • Neuenschwander, J., S. J. Sanabria, P. Schuetz, R. Widmann, and M. Vogel. 2013. Delamination Detection in a 90-Year-Old Glulam Block with Scanning Dry Point-Contact Ultrasound. hfsg 67 (8):949–57. doi:10.1515/hf-2012-0202.
  • Palma, P., and R. Steiger. 2020. Structural Health Monitoring of Timber Structures – Review of Available Methods and Case Studies. Construction and Building Materials 248:118528. doi:10.1016/j.conbuildmat.2020.118528.
  • Perera, R., R. Marin, and A. Ruiz. 2013. Static-Dynamic Multi-Scale Structural Damage Identification in a Multi-Objective Framework. Journal of Sound and Vibration 332 (6):1484–500. doi:10.1016/j.jsv.2012.10.033.
  • Perera, R., and A. Ruiz. 2008. A Multistage FE Updating Procedure for Damage Identification in Large-Scale Structures Based on Multiobjective Evolutionary Optimization. Mechanical Systems and Signal Processing 22 (4):970–91. doi:10.1016/j.ymssp.2007.10.004.
  • Qu, H., T. Li, and G. Chen. 2019. Adaptive Wavelet Transform: Definition, Parameter Optimization Algorithms, and Application for Concrete Delamination Detection from Impact Echo Responses. Structural Health Monitoring 18 (4):1022–39. doi:10.1177/1475921718776200.
  • Sanabria, S. J., R. Furrer, J. Neuenschwander, P. Niemz, and P. Schütz. 2015. Analytical Modeling, Finite-Difference Simulation and Experimental Validation of Air-Coupled Ultrasound Beam Refraction and Damping through Timber Laminates, with Application to Non-Destructive Testing. Ultrasonics 63:65–85. doi:10.1016/j.ultras.2015.06.013.
  • Sousa, H. S., J. D. Sørensen, P. H. Kirkegaard, J. M. Branco, and P. B. Lourenço. 2013. On the Use of NDT Data for Reliability-Based Assessment of Existing Timber Structures. Engineering Structures 56:298–311. doi:10.1016/j.engstruct.2013.05.014.
  • Sun, G., Y. Wang, Q. Luo, and Q. Li. 2022. Vibration-Based Damage Identification in Composite Plates Using 3D-DIC and Wavelet Analysis. Mechanical Systems and Signal Processing 173:108890. doi:10.1016/j.ymssp.2022.108890.
  • Tang, S., N. Ye, and Z. Huang. 2023. Optimal Design of Flexspline Structure Based on Approximation Model. Mechanics Based Design of Structures and Machines 51 (3):1297–315. doi:10.1080/15397734.2020.1864638.
  • Tiitta, M., L. Tomppo, V. Möttönen, J. Marttila, J. Antikainen, R. Lappalainen, and H. Heräjärvi. 2017. Predicting the Bending Properties of Air Dried and Modified Populus tremula L. Wood Using Combined Air-Coupled Ultrasound and Electrical Impedance Spectroscopy. European Journal of Wood and Wood Products 75 (5):701–9. doi:10.1007/s00107-016-1140-0.
  • Whalen, T. M. 2008. The Behavior of Higher Order Mode Shape Derivatives in Damaged, Beam-like Structures. Journal of Sound and Vibration 309 (3–5):426–64. doi:10.1016/j.jsv.2007.07.054.
  • Wilcox, W. W. 1988. Detection of Early Stages of Wood Decay with Ultrasonic Pulse Velocity. Forest Products Journal 38:68–73.
  • Zhai, S. Y., Y. F. Lyu, K. Cao, G. Qiang Li, W. Yong Wang, and C. Chen. 2023. Seismic Behavior of an Innovative Bolted Connection with Dual-Slot Hole for Modular Steel Buildings. Engineering Structures 279 (December 2022):115619. doi:10.1016/j.engstruct.2023.115619.
  • Zhang, C. W. 2023. The Active Rotary Inertia Driver System for Flutter Vibration Control of Bridges and Various Promising Applications. Science China Technological Sciences 66 (2):390–405. doi:10.1007/s11431-022-2228-0.
  • Zhang, Z., W. Li, and J. Yang. 2021. Analysis of Stochastic Process to Model Safety Risk in Construction Industry. Journal of Civil Engineering and MANAGEMENT 27 (2):87–99. doi:10.3846/jcem.2021.14108.
  • Zhang, Z., G. Liang, Q. Niu, F. Wang, J. Chen, B. Zhao, and L. Ke. 2022. A Wiener Degradation Process with Drift-Based Approach of Determining Target Reliability Index of Concrete Structures. Quality and Reliability Engineering International 38 (7):3710–25. doi:10.1002/qre.3168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.