230
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A procedure for the stiffness identification of parallel robots under measurement limitations

, ORCID Icon, &
Pages 4710-4738 | Received 14 Nov 2022, Accepted 30 Jun 2023, Published online: 22 Jul 2023

References

  • Abele, E., K. Schützer, J. Bauer, and M. Pischan. 2012. Tool path adaption based on optical measurement data for milling with industrial robots. Production Engineering 6 (4–5):459–65. doi: 10.1007/s11740-012-0383-9.
  • Abele, E., M. Weigold, and S. Rothenbücher. 2007. Modeling and identification of an industrial robot for machining applications. CIRP Annals 56 (1):387–90. doi: 10.1016/j.cirp.2007.05.090.
  • Alici, G., and B. Shirinzadeh. 2005. Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Transactions on Robotics 21 (4):554–64. doi: 10.1109/TRO.2004.842347.
  • Ayiz, C., and S. Kucuk. 2009. The kinematics of industrial robot manipulators based on the exponential rotational matrices. Paper presented at the 2009 IEEE International Symposium on Industrial Electronics.
  • Bu, Y., W. Liao, W. Tian, J. Zhang, and L. Zhang. 2017. Stiffness analysis and optimization in robotic drilling application. Precision Engineering 49:388–400. doi: 10.1016/j.precisioneng.2017.04.001.
  • Cammarata, A., and S. Kucuk. 2012. On the stiffness analysis and elastodynamics of parallel kinematic machines. Serial and Parallel Robot Manipulators-Kinematics, Dynamics, Control and Optimization (20):85–108.
  • Cao, W-a., H. Ding, and D. Yang. 2017. A method for compliance modeling of five degree-of-freedom overconstrained parallel robotic mechanisms with 3T2R output motion. Journal of Mechanisms and Robotics 9 (1):011011. doi: 10.1115/1.4035270.
  • Chen, Y., J. Gao, H. Deng, D. Zheng, X. Chen, and R. Kelly. 2013. Spatial statistical analysis and compensation of machining errors for complex surfaces. Precision Engineering 37 (1):203–12. doi: 10.1016/j.precisioneng.2012.08.003.
  • Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons.
  • Deblaise, D., X. Hernot, and P. Maurine. 2006. A systematic analytical method for PKM stiffness matrix calculation. Paper presented at the Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. doi: 10.1109/ROBOT.2006.1642350.
  • Dépincé, P., and J.-Y. Hascoet. 2006. Active integration of tool deflection effects in end milling. Part 1. Prediction of milled surfaces. International Journal of Machine Tools and Manufacture 46 (9):937–44. doi: 10.1016/j.ijmachtools.2005.08.005.
  • Dumas, C., S. Caro, S. Garnier, and B. Furet. 2011. Joint stiffness identification of six-revolute industrial serial robots. Robotics and Computer-Integrated Manufacturing 27 (4):881–8. doi: 10.1016/j.rcim.2011.02.003.
  • Fu, Z., J. S. Dai, K. Yang, X. Chen, and P. López-Custodio. 2020. Analysis of unified error model and simulated parameters calibration for robotic machining based on Lie theory. Robotics and Computer-Integrated Manufacturing 61:101855. doi: 10.1016/j.rcim.2019.101855.
  • Görgülü, I., M. I. C. Dede, and G. Kiper. 2023. Stiffness modeling of a 2-DoF over-constrained planar parallel mechanism. Mechanism and Machine Theory 185:105343. doi: 10.1016/j.mechmachtheory.2023.105343.
  • Gosselin, C. 2002. Stiffness analysis of parallel mechanisms using a lumped model. International Journal of Robotics and Automation 17:17–27.
  • Guérin, D., S. Caro, S. Garnier, and A. Girin. 2014. Optimal measurement pose selection for joint stiffness identification of an industrial robot mounted on a rail. Paper presented at the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
  • Hu, M., H. Wang, and X. Pan. 2020. Optimal configuration selection for stiffness identification of 7-Dof collaborative robots. Intelligent Service Robotics 13 (3):379–91. doi: 10.1007/s11370-020-00322-x.
  • Jiang, Z., M. Huang, X. Tang, B. Song, and Y. Guo. 2021. Elasto-geometrical calibration of six-DOF serial robots using multiple identification models. Mechanism and Machine Theory 157:104211. doi: 10.1016/j.mechmachtheory.2020.104211.
  • Kalas, V. J., A. Vissière, O. Company, S. Krut, P. Noiré, T. Roux, and F. Pierrot. 2021. Application-oriented selection of poses and forces for robot elastostatic calibration. Mechanism and Machine Theory 159:104176. doi: 10.1016/j.mechmachtheory.2020.104176.
  • Kamali, K., A. Joubair, I. A. Bonev, and P. Bigras. 2016. Elasto-geometrical calibration of an industrial robot under multidirectional external loads using a laser tracker. Paper presented at the 2016 IEEE International Conference on Robotics and Automation (ICRA). doi: 10.1109/ICRA.2016.7487630.
  • Kassimali, A. 2021. Matrix analysis of structures. Boston: Cengage Learning Inc.
  • Kim, H.-S., C.-R. Shin, J.-H. Kyung, Y.-H. Ha, H.-S. Yu, and P.-S. Shim. 2005. Stiffness analysis of a low-DOF parallel manipulator including the elastic deformations of both joints and links (ICCAS 2005).
  • Klimchik, A. 2011. Enhanced stiffness modeling of serial and parallel manipulators for robotic-based processing of high performance materials Ecole Centrale de Nantes (ECN); Ecole des Mines de Nantes.
  • Klimchik, A., A. Ambiehl, S. Garnier, B. Furet, and A. Pashkevich. 2017. Efficiency evaluation of robots in machining applications using industrial performance measure. Robotics and Computer-Integrated Manufacturing 48:12–29. doi: 10.1016/j.rcim.2016.12.005.
  • Klimchik, A., B. Furet, S. Caro, and A. Pashkevich. 2015. Identification of the manipulator stiffness model parameters in industrial environment. Mechanism and Machine Theory 90:1–22. doi: 10.1016/j.mechmachtheory.2015.03.002.
  • Klimchik, A., A. Pashkevich, S. Caro, and D. Chablat. 2012. Stiffness matrix of manipulators with passive joints: Computational aspects. IEEE Transactions on Robotics 28 (4):955–8. doi: 10.1109/TRO.2012.2187395.
  • Klimchik, A., A. Pashkevich, and D. Chablat. 2013. CAD-based approach for identification of elasto-static parameters of robotic manipulators. Finite Elements in Analysis and Design 75:19–30. doi: 10.1016/j.finel.2013.06.008.
  • Klimchik, A., A. Pashkevich, and D. Chablat. 2019. Fundamentals of manipulator stiffness modeling using matrix structural analysis. Mechanism and Machine Theory 133:365–94. doi: 10.1016/j.mechmachtheory.2018.11.023.
  • Klimchik, A., A. Pashkevich, D. Chablat, and G. Hovland. 2013. Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robotics and Computer-Integrated Manufacturing 29 (2):385–93. doi: 10.1016/j.rcim.2012.09.008.
  • Kucuk, S. 2018. Dexterous workspace optimization for a new hybrid parallel robot manipulator. Journal of Mechanisms and Robotics 10 (6):064503. doi: 10.1115/1.4041334.
  • Kucuk, S., and B. D. Gungor. 2016. Inverse kinematics solution of a new hybrid robot manipulator proposed for medical purposes. Paper presented at the 2016 Medical Technologies National Congress (TIPTEKNO). doi: 10.1109/TIPTEKNO.2016.7863076.
  • Li, Q., L. Xu, Q. Chen, and X. Chai. 2019. Analytical elastostatic stiffness modeling of overconstrained parallel manipulators using geometric algebra and strain energy. Journal of Mechanisms and Robotics 11 (3):031007. doi: 10.1115/1.4043046.
  • Liu, H., T. Huang, D. G. Chetwynd, and A. Kecskeméthy. 2017. Stiffness modeling of parallel mechanisms at limb and joint/link levels. IEEE Transactions on Robotics 33 (3):734–41. doi: 10.1109/TRO.2017.2654499.
  • Lo, C.-C., and C.-Y. Hsiao. 1998. A method of tool path compensation for repeated machining process. International Journal of Machine Tools and Manufacture 38 (3):205–13. doi: 10.1016/S0890-6955(97)00049-7.
  • Long, C. S., J. Snyman, and A. Groenwold. 2003. Optimal structural design of a planar parallel platform for machining. Applied Mathematical Modelling 27 (8):581–609. doi: 10.1016/S0307-904X(03)00070-2.
  • Majou, F., C. Gosselin, P. Wenger, and D. Chablat. 2007. Parametric stiffness analysis of the Orthoglide. Mechanism and Machine Theory 42 (3):296–311. doi: 10.1016/j.mechmachtheory.2006.03.018.
  • Marie, S., E. Courteille, and P. Maurine. 2013. Elasto-geometrical modeling and calibration of robot manipulators: Application to machining and forming applications. Mechanism and Machine Theory 69:13–43. doi: 10.1016/j.mechmachtheory.2013.05.003.
  • Miettinen, K. 2012. Nonlinear multiobjective optimization, vol. 12. New York: Springer Science & Business Media, LLC.
  • Nagai, K., and Z. Liu. 2008. A systematic approach to stiffness analysis of parallel mechanisms. Paper presented at the 2008 IEEE International Conference on Robotics and Automation.
  • Nguyen, V. L., C.-H. Kuo, and P. T. Lin. 2022. Compliance error compensation of a robot end-effector with joint stiffness uncertainties for milling: An analytical model. Mechanism and Machine Theory 170:104717. doi: 10.1016/j.mechmachtheory.2021.104717.
  • Pandharipande, S. L., A. R. Deshmukh, and R. P. Kalnake. 2014. Genetic algorithm for constrained optimization with stepwise approach in search interval selection of variables. International Journal of Computer Applications 87 (11):43–52.
  • Pashkevich, A., A. Klimchik, and D. Chablat. 2011. Enhanced stiffness modeling of manipulators with passive joints. Mechanism and Machine Theory 46 (5):662–79. doi: 10.1016/j.mechmachtheory.2010.12.008.
  • Portman, V. 2008. Stiffness evaluation of machines and robots: Minimum collinear stiffness value approach. Paper presented at the Engineering Systems Design and Analysis. doi: 10.1115/ESDA2008-59249.
  • Portman, V. 2021. Robot stiffness evaluability problem: Solution by Schur complements and collinear stiffness values. Mechanism and Machine Theory 161:104297. doi: 10.1016/j.mechmachtheory.2021.104297.
  • Raoofian, A., A. Taghvaeipour, and A. Kamali. 2018. On the stiffness analysis of robotic manipulators and calculation of stiffness indices. Mechanism and Machine Theory 130:382–402. doi: 10.1016/j.mechmachtheory.2018.08.025.
  • Raoofian, A., A. Taghvaeipour, and A. Kamali E. 2022. Elastodynamic analysis of multibody systems and parametric mass matrix derivation. Mechanics Based Design of Structures and Machines 50 (10):3626–48. doi: 10.1080/15397734.2020.1815211.
  • Rezaei, A., A. Akbarzadeh, and M.-R. Akbarzadeh-T. 2012. An investigation on stiffness of a 3-PSP spatial parallel mechanism with flexible moving platform using invariant form. Mechanism and Machine Theory 51:195–216. doi: 10.1016/j.mechmachtheory.2011.11.011.
  • Schneider, U., M. Momeni-K, M. Ansaloni, and A. Verl. 2014. Stiffness modeling of industrial robots for deformation compensation in machining. Paper presented at the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.
  • Slavković, N. R., D. S. Milutinović, B. M. Kokotović, M. M. Glavonjić, S. T. Živanović, and K. F. Ehmann. 2013. Cartesian compliance identification and analysis of an articulated machining robot. FME Transactions 41 (2):83–95.
  • Taghvaeipour, A., J. Angeles, and L. Lessard. 2012. On the elastostatic analysis of mechanical systems. Mechanism and Machine Theory 58:202–16. doi: 10.1016/j.mechmachtheory.2012.07.011.
  • Toz, M., and S. Küçük. 2016. Development of derivation of inverse Jacobian matrices for 195 6-DOF GSP mechanisms. Turkish Journal of Electrical Engineering & Computer Sciences 24 (5):4142–53. doi: 10.3906/elk-1501-110.
  • Williams, F., and W. Wittrick. 1970. An automatic computational procedure for calculating natural frequencies of skeletal structures. International Journal of Mechanical Sciences 12 (9):781–91. doi: 10.1016/0020-7403(70)90053-6.
  • Wu, X., Y. Wang, Z. Xiang, R. Yan, R. Tan, and R. Shu. 2023. Stiffness analysis of a planar parallel manipulator with variable platforms. Mechanics Based Design of Structures and Machines 51 (3):1723–40. doi: 10.1080/15397734.2021.1875333.
  • Yan, S., S. Ong, and A. Nee. 2016. Stiffness analysis of parallelogram-type parallel manipulators using a strain energy method. Robotics and Computer-Integrated Manufacturing 37:13–22. doi: 10.1016/j.rcim.2015.05.004.
  • Yue, W., H. Liu, and T. Huang. 2022. An approach for predicting stiffness of a 5-DOF hybrid robot for friction stir welding. Mechanism and Machine Theory 175:104941. doi: 10.1016/j.mechmachtheory.2022.104941.
  • Yue, W., H. Liu, G. Li, and K. Xu. 2024. Approach for identifying Cartesian stiffness of a 5-degree-of-freedom hybrid robot for machining. Journal of Mechanisms and Robotics 16 (3):031009. doi: 10.1115/1.4057071.
  • Zhang, F. 2006. The Schur complement and its applications, vol. 4. New York: Springer Science & Business Media.
  • Zhang, F., Z. Yuan, and J. Zhang. 2023. Stiffness modeling and deformation analysis of parallel manipulators based on the principal axes decomposition of compliance matrices. Journal of Mechanisms and Robotics 15 (1):011010. doi: 10.1115/1.4054331.
  • Zhang, X., W. Yang, X. Cheng, and Y. Chen. 2011. Stiffness identification for serial robot manipulator based on uncertainty approach. Paper presented at the International Conference on Intelligent Robotics and Applications.
  • Zhu, C., X. Liu, and W. Liu. 2021. Research on structural optimization of 3-TPT parallel mechanism based on stiffness characteristics. Mechanics Based Design of Structures and Machines 49 (2):256–70. doi: 10.1080/15397734.2019.1686990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.