209
Views
2
CrossRef citations to date
0
Altmetric
China’s New Economic Normal, Energy Transition and Low-carbon Development; Guest Editor: Jiahai Yuan

Study on the Dual Targets of CO2 Emissions Reductions in China: Decoupling Analysis and Driving Forces

, &

References

  • Ang, B. W., and F. L. Liu. 2001. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 26 (6):537–48. doi:10.1016/S0360-5442(01)00022-6.
  • Ang, B. W., B. Su, and H. Wang. 2016. A spatial–Temporal decomposition approach to performance assessment in energy and emissions. Energy Economics 60:112–21. doi:10.1016/j.eneco.2016.08.024.
  • Ang, B. W., X. Xu, and B. Su. 2015. Multi-country comparisons of energy performance: The index decomposition analysis approach. Energy Economics 47:68–76. doi:10.1016/j.eneco.2014.10.011.
  • Cansino, J. M., A. Sánchez-Braza, and M. L. Rodríguez-Arévalo. 2015. Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach. Renewable and Sustainable Energy Reviews 48:749–59. doi:10.1016/j.rser.2015.04.011.
  • Cao, Y., Y. Zhao, H. Wang, H. Li, S. Wang, Y. Liu, Q. Shi, and Y. Zhang. 2019. Driving forces of national and regional carbon intensity changes in China: Temporal and spatial multiplicative structural decomposition analysis. Journal of Cleaner Production 213:1380–410. doi:10.1016/j.jclepro.2018.12.155.
  • Chang, C. 2010. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China. Applied Energy 87 (11):3533–37. doi:10.1016/j.apenergy.2010.05.004.
  • Chen, C., T. Zhao, R. Yuan, and Y. Kong. 2019. A spatial-temporal decomposition analysis of China’s carbon intensity from the economic perspective. Journal of Cleaner Production 215:557–69. doi:10.1016/j.jclepro.2019.01.073.
  • Chen, J., P. Wang, L. Cui, S. Huang, and M. Song. 2018. Decomposition and decoupling analysis of CO2 emissions in OECD. Applied Energy 231:937–50. doi:10.1016/j.apenergy.2018.09.179.
  • Kang, Y., T. Zhao, and Y. Yang. 2016. Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecological Indicators 63:231–39. doi:10.1016/j.ecolind.2015.12.011.
  • Li, H., Y. Zhao, X. Qiao, Y. Liu, Y. Cao, Y. Li, S. Wang, Z. Zhang, Y. Zhang, and J. Weng. 2017a. Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models. Energy Economics 68:522–38. doi:10.1016/j.eneco.2017.10.024.
  • Li, J., X. Huang, H. Yang, X. Chuai, and C. Wu. 2017b. Convergence of carbon intensity in the Yangtze River Delta, China. Habitat International 60:58–68. doi:10.1016/j.habitatint.2016.12.012.
  • Li, T., Y. Wang, and D. Zhao. 2016. Environmental Kuznets curve in China: New evidence from dynamic panel analysis. Energy Policy 91:138–47. doi:10.1016/j.enpol.2016.01.002.
  • Liu, Y., S. Chen, B. Chen, and W. Yang. 2017. Analysis of CO2 emissions embodied in China’s bilateral trade: A non-competitive import input–Output approach. Journal of Cleaner Production 163:S410–S419. doi:10.1016/j.jclepro.2016.02.085.
  • Lu, Q., H. Yang, X. Huang, X. Chuai, and C. Wu. 2015. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy 82:414–25. doi:10.1016/j.energy.2015.01.052.
  • Ma, Y., Q. Ji, and J. Pan. 2019. Oil financialisation and volatility forecast: Evidence from multidimensional predictors. Journal of Forecasting. doi:10.1002/for.2577.
  • Ma, Y., D. Zhang, Q. Ji, and J. Pan. 2019. Spillovers between oil and stock returns in the US energy sector: Does idiosyncratic information matter? Energy Economics 81:536–44. doi:10.1016/j.eneco.2019.05.003.
  • OECD. 2002. Indicators to measure decoupling of environmental pressures from economic growth. Paris: OECD.
  • Riti, J. S., D. Song, Y. Shu, and M. Kamah. 2017. Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? Journal of Cleaner Production 166:1448–61. doi:10.1016/j.jclepro.2017.08.117.
  • Román-Collado, R., and A. V. Morales-Carrión. 2018. Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes. Energy Policy 115:273–80. doi:10.1016/j.enpol.2018.01.019.
  • Tapio, P. 2005. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transport Policy 12 (2):137–51. doi:10.1016/j.tranpol.2005.01.001.
  • Wang, C. 2010. Decoupling analysis of China economic growth and energy consumption. China Population, Resources and Environment 20 (3):35–37.
  • Wang, J., M. Hu, and J. F. D. Rodrigues. 2018. An empirical spatiotemporal decomposition analysis of carbon intensity in China’s industrial sector. Journal of Cleaner Production 195:133–44. doi:10.1016/j.jclepro.2018.05.185.
  • Wang, S., Q. Li, C. Fang, and C. Zhou. 2016. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China. The Science of the Total Environment 542:360–71. doi:10.1016/j.scitotenv.2015.10.027.
  • Wang, W., M. Li, and M. Zhang. 2017. Study on the changes of the decoupling indicator between energy-related CO 2 emission and GDP in China. Energy 128:11–18. doi:10.1016/j.energy.2017.04.004.
  • Wang, Y., C. Zhang, A. Lu, L. Li, Y. He, J. ToJo, and X. Zhu. 2017. A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China. Applied Energy 190:172–80. doi:10.1016/j.apenergy.2016.12.109.
  • Wang, Z., and L. Yang. 2015. Delinking indicators on regional industry development and carbon emissions: Beijing–Tianjin–Hebei economic band case. Ecological Indicators 48:41–48. doi:10.1016/j.ecolind.2014.07.035.
  • Xu, S., Z. He, and R. Long. 2014. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Applied Energy 127:182–93. doi:10.1016/j.apenergy.2014.03.093.
  • Yang, M., F. Yang, and C. Sun. 2018. Factor market distortion correction, resource reallocation and potential productivity gains: An empirical study on China’s heavy industry sector. Energy Economics 69:270–79. doi:10.1016/j.eneco.2017.11.021.
  • Yeh, J., and C. Liao. 2017. Impact of population and economic growth on carbon emissions in Taiwan using an analytic tool STIRPAT. Sustainable Environment Research 27 (1):41–48. doi:10.1016/j.serj.2016.10.001.
  • Yuan, J., Y. Xu, Z. Hu, C. Zhao, M. Xiong, and J. Guo. 2014. Peak energy consumption and CO2 emissions in China. Energy Policy 68:508–23. doi:10.1016/j.enpol.2014.01.019.
  • Yuan, R., J. F. D. Rodrigues, and P. Behrens. 2019. Driving forces of household carbon emissions in China: A spatial decomposition analysis. Journal of Cleaner Production 233:932–45. doi:10.1016/j.jclepro.2019.06.110.
  • Zhang, W., K. Li, D. Zhou, W. Zhang, and H. Gao. 2016. Decomposition of intensity of energy-related CO 2 emission in Chinese provinces using the LMDI method. Energy Policy 92:369–81. doi:10.1016/j.enpol.2016.02.026.
  • Zhao, X., X. Zhang, N. Li, S. Shao, and Y. Geng. 2017. Decoupling economic growth from carbon dioxide emissions in China: A sectoral factor decomposition analysis. Journal of Cleaner Production 142:3500–16. doi:10.1016/j.jclepro.2016.10.117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.