2,113
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Assessment of Work of Breathing in Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease

ORCID Icon, &
Pages 418-428 | Received 17 Sep 2019, Accepted 14 Oct 2019, Published online: 06 Nov 2019

References

  • Spencer S, Calverley PM, Burge PS. Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004;23(5):698–702. doi:10.1183/09031936.04.00121404.
  • Kessler R, Stahl E, Vogelmeier C, et al. Patient understanding, detection, and experience of COPD exacerbations: an observational, interview-based study. Chest. 2006;130(1):133–142. doi:10.1378/chest.130.1.133.
  • Garcia-Aymerich J, Farrero E, Felez MA, et al. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax. 2003; 58(2):100–105. doi:10.1136/thorax.58.2.100.
  • Anzueto A. Impact of exacerbations on COPD. Eur Respir Rev. 2010;19(116):113–118. doi:10.1183/09059180.00002610.
  • Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. 15doi:10.1164/rccm.201204-0596PP.
  • Celli BR, MacNee W, Agusti A, et al. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004; 23(6):932–946. doi:10.1183/09031936.04.00014304.
  • Davies L, Angus RM, Calverley PM. Oral corticosteroids in patients admitted to hospital with exacerbations of chronic obstructive pulmonary disease: a prospective randomised controlled trial. Lancet (London, England). 1999; 7354(9177):456–460. doi:10.1016/S0140-6736(98)11326-0.
  • Maltais F, Ostinelli J, Bourbeau J, et al. Comparison of nebulized budesonide and oral prednisolone with placebo in the treatment of acute exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Am J Respir Crit Care Med. 2002;165(5):698–703. doi:10.1164/ajrccm.165.5.2109093.
  • Niewoehner DE. Oral prednisolone was not inferior to intravenous prednisolone for treatment failure in chronic obstructive pulmonary disease exacerbation. Evid Based Med. 2008; 13(5):145. doi:10.1136/ebm.13.5.145.
  • Niewoehner DE, Erbland ML, Deupree RH, et al. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. Department of Veterans Affairs Cooperative Study Group. N Engl J Med. 1999;340(25):1941–1947. 24doi:10.1056/NEJM199906243402502.
  • Thompson WH, Nielson CP, Carvalho P, et al. Controlled trial of oral prednisone in outpatients with acute COPD exacerbation. Am J Respir Crit Care Med. 1996; 154(2):407–412. doi:10.1164/ajrccm.154.2.8756814.
  • Quon BS, Gan WQ, Sin DD. Contemporary management of acute exacerbations of COPD: a systematic review and metaanalysis. Chest. 2008; 133(3):756–766. doi:10.1378/chest.07-1207.
  • Austin MA, Wills KE, Blizzard L, et al. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ (Clinical Research ed). 2010;341(oct18 2):c5462. doi:10.1136/bmj.c5462.
  • Brochard L, Mancebo J, Wysocki M, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995; 333(13):817–822. doi:10.1056/NEJM199509283331301.
  • Lightowler JV, Wedzicha JA, Elliott MW, et al. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ (Clinical Research ed). 2003;326(7382):185. doi:10.1136/bmj.326.7382.185.
  • Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426. doi:10.1183/13993003.02426-2016.
  • Osadnik CR, Tee VS, Carson-Chahhoud KV, et al. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;7(7):Cd004104.
  • Demoule A, Girou E, Richard JC, et al. Increased use of noninvasive ventilation in French intensive care units. Intensive Care Med. 2006; 32(11):1747–1755. doi:10.1007/s00134-006-0229-z.
  • Abroug F, Ouanes-Besbes L, Hammouda Z, et al. Noninvasive ventilation with helium-oxygen mixture in hypercapnic COPD exacerbation: aggregate meta-analysis of randomized controlled trials. Ann Intensive Care. 2017; 7(1):59.
  • Ozsancak Ugurlu A, Habesoglu MA. Epidemiology of NIV for acute respiratory failure in COPD patients: results from the international surveys vs. the “real world”. COPD. 2017;14(4):429–438. doi:10.1080/15412555.2017.1336527.
  • Contou D, Fragnoli C, Cordoba-Izquierdo A, et al. Noninvasive ventilation for acute hypercapnic respiratory failure: intubation rate in an experienced unit. Am J Respir Crit Care Med. 2013;58(12):2045–2052. doi:10.4187/respcare.02456.
  • Carratu P, Bonfitto P, Dragonieri S, et al. Early and late failure of noninvasive ventilation in chronic obstructive pulmonary disease with acute exacerbation. Eur J Clin Invest. 2005;35(6):404–409. doi:10.1111/j.1365-2362.2005.01509.x.
  • Kumar S, Khilnani GC, Banga A, et al. Predictors of requirement of mechanical ventilation in patients with chronic obstructive pulmonary disease with acute respiratory failure. Lung India. 2013; 30(3):178–182. doi:10.4103/0970-2113.116238.
  • Confalonieri M, Garuti G, Cattaruzza MS, et al. A chart of failure risk for noninvasive ventilation in patients with COPD exacerbation. Eur Respir J. 2005; 25(2):348–355. doi:10.1183/09031936.05.00085304.
  • Barrett NA, Camporota L. The evolving role and practical application of extracorporeal carbon dioxide removal in critical care. Critical care Resusc. 2017;19(Suppl 1):62–67.
  • Moss CE, Galtrey EJ, Camporota L, et al. A retrospective observational case series of low-flow venovenous extracorporeal carbon dioxide removal use in patients with respiratory failure. ASAIO J (American Society for Artificial Internal Organs: 1992). 2016;62(4):458–462. doi:10.1097/MAT.0000000000000386.
  • O'Donnell DE, Neder JA, Elbehairy AF. Physiological impairment in mild COPD. Respirology (Carlton, Vic). 2016;21(2):211–223. doi:10.1111/resp.12619.
  • O’Donnell D, Webb K, et al. Chronic obstructive pulmonary disease In: Calverley P, MacNee W, Pride N, editors. Exercise. 2nd ed. London: Arnold; 2003. p. 243–269.
  • Calverley P. Respiratory failure in chronic obstructive pulmonary disease. Eur Respir J. 2003;22(Supplement 47):26s–30S. doi:10.1183/09031936.03.00030103.
  • O'Donnell D, Parker C. COPD exacerbations: pathophysiology. Thorax. 2006;61:354–361. doi:10.1136/thx.2005.041830.
  • Orozco-Levi M, Lloreta J, Minguella J, et al. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164(9):1734–1739., doi:10.1164/ajrccm.164.9.2011150.
  • Polkey MI, Kyroussis D, Hamnegard CH, et al. Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154(5):1310–1317., doi:10.1164/ajrccm.154.5.8912741.
  • Haluszka J, Chartrand DA, Grassino AE, et al. Intrinsic PEEP and arterial PCO2 in stable patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;141(5_pt_1):1194–1197. doi:10.1164/ajrccm/141.5_Pt_1.1194.
  • Pare PD, Brooks LA, Bates J, et al. Exponential analysis of the lung pressure-volume curve as a predictor of pulmonary emphysema. Am Rev Respir Dis. 1982;126(1):54–61.,
  • O’Donnell D, Revill S, Webb K. Dynamic hyperinflation and exercise intolerance in COPD. Am J Respir Crit Care Med. 2001;164:770–777. doi:10.1164/ajrccm.164.5.2012122.
  • Chen Z, Eldridge F, Wagner P. Respiratory-associated thalamic activity is related to level of respiratory drive. Respir Physiol. 1992;90(1):99–113. doi:10.1016/0034-5687(92)90137-L.
  • O’Donnell D, Chau L, Bertley J. Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms. Am J Respir Crit Care Med. 1997;155:109–115. doi:10.1164/ajrccm.155.1.9001298.
  • De Troyer A, Leeper JB, McKenzie DK, et al. Neural drive to the diaphragm in patients with severe COPD. Am J Respir Crit Care Med. 1997;155(4):1335–1340., doi:10.1164/ajrccm.155.4.9105076.
  • Sinderby C, Spahija J, Beck J, et al. Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(7):1637–1641., doi:10.1164/ajrccm.163.7.2007033.
  • Appendini L, Patessio A, Zanaboni S, et al. Physiologic effects of positive end expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149(5):1069–1076. doi:10.1164/ajrccm.149.5.8173743.
  • Lumb A. Nunn's Applied Respiratory Physiology. 8th ed. London: Elsevier; 2017.
  • Lu Q, Rouby JJ. Measurement of pressure-volume curves in patients on mechanical ventilation: methods and significance. Crit Care. 2000;4(2):91–100.
  • Benditt JO. Esophageal and gastric pressure measurements. Respir Care. 2005; 50(1):68–75. discussion 75–77.
  • Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014; 20(3):352–358. doi:10.1097/MCC.0000000000000089.
  • Hedenstierna G. Esophageal pressure: benefit and limitations. Minerva Anestesiol. 2012;78(8):959–966.
  • Brochard L. Measurement of esophageal pressure at bedside: pros and cons. Curr Opin Crit Care. 2014; 20(1):39–46. doi:10.1097/MCC.0000000000000050.
  • Akoumianaki E, Maggiore SM, Valenza F, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014; 1189(5):520–531. doi:10.1164/rccm.201312-2193CI.
  • Pecchiari M, Loring SH, D’Angelo E. Esophageal pressure as an estimate of average pleural pressure with lung or chest distortion in rats. Respir Physiol Neurobiol. 2013;186(2):229–235. 1doi:10.1016/j.resp.2013.02.006.
  • Krell WS, Rodarte JR. Effects of acute pleural effusion on respiratory system mechanics in dogs. J Appl Physiol. 1985; 59(5):1458–1463. doi:10.1152/jappl.1985.59.5.1458.
  • Cabello B, Mancebo J. Work of breathing. Intensive Care Med. 2006; 32(9):1311–1314. doi:10.1007/s00134-006-0278-3.
  • Campbell E. The respiratory muscles and the mechanics of breathing. Vol. 43. London: Lloyd-Luke; 1957. (2).
  • Collett PW, Perry C, Engel LA. Pressure-time product, flow, and oxygen cost of resistive breathing in humans. J Appl Physiol. 1985; 58(4):1263–1272. doi:10.1152/jappl.1985.58.4.1263.
  • Blanch L, Bernabe F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005;50(1):110–123. discussion 123–4.
  • Purro A, Appendini L, Patessio A, et al. Static intrinsic PEEP in COPD patients during spontaneous breathing. Am J Respir Crit Care Med. 1998; 157(4):1044–1050. doi:10.1164/ajrccm.157.4.9702007.
  • Ranieri VM, Mascia L, Petruzzelli V, et al. Inspiratory effort and measurement of dynamic intrinsic PEEP in COPD patients: effects of ventilator triggering systems. Intensive Care Med. 1995; 21(11):896–903. doi:10.1007/BF01712330.
  • Brochard L. Intrinsic (or auto-) positive end-expiratory pressure during spontaneous or assisted ventilation. Intensive Care Med. 2002;28(11):1552–1554. doi:10.1007/s00134-002-1515-z.
  • Goldberg P, Reissmann H, Maltais F, et al. Efficacy of noninvasive CPAP in COPD with acute respiratory failure. Eur Respir J. 1995;8(11):1894–1900. doi:10.1183/09031936.95.08111894.
  • Annat GJ, Viale JP, Dereymez CP, et al. Oxygen cost of breathing and diaphragmatic pressure-time index. Measurement in patients with COPD during weaning with pressure support ventilation. Chest. 1990;98(2):411–414. doi:10.1378/chest.98.2.411.
  • Ceriana P, Vitacca M, Carlucci A, et al. Changes of respiratory mechanics in COPD patients from stable state to acute exacerbations with respiratory failure. COPD. 2017; 14(2):150–155. doi:10.1080/15412555.2016.1254173.
  • Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43(10):1453–1463. doi:10.1007/s00134-017-4890-1.
  • Pisani L, Fasano L, Corcione N, et al. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax. 2017;72(4):373–375. doi:10.1136/thoraxjnl-2016-209673.
  • Ceriana P, Nava S, Vitacca M, et al. Noninvasive ventilation during weaning from prolonged mechanical ventilation. Pulmonology. 2019. doi:10.1016/j.pulmoe.2019.07.006.
  • Vitacca M, Barbano L, D'Anna S, et al. Comparison of five bilevel pressure ventilators in patients with chronic ventilatory failure: a physiologic study. Chest. 2002; 22(6):2105–2114. doi:10.1378/chest.122.6.2105.
  • Vitacca M, Bianchi L, Zanotti E, et al. Assessment of physiologic variables and subjective comfort under different levels of pressure support ventilation. Chest. 2004;126(3):851–859. doi:10.1378/chest.126.3.851.
  • Vitacca M, Lanini B, Nava S, et al. Inspiratory muscle workload due to dynamic intrinsic PEEP in stable COPD patients: effects of two different settings of non-invasive pressure-support ventilation. Monaldi Arch Chest Dis. 2004;61(2):81–85. doi:10.4081/monaldi.2004.704.
  • Vitacca M, Nava S, Confalonieri M, et al. The appropriate setting of noninvasive pressure support ventilation in stable COPD patients. Chest. 2000; 118(5):1286–1293. doi:10.1378/chest.118.5.1286.
  • Mancebo J, Amaro P, Lorino H, et al. Effects of albuterol inhalation on the work of breathing during weaning from mechanical ventilation. Am Rev Respir Dis. 1991;144(1):95–100. doi:10.1164/ajrccm/144.1.95.
  • Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest. 2013;143(4):927–938. doi:10.1378/chest.12-1817.
  • Washko GR, O'Donnell CR, Loring SH. Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J Appl Physiol. 2006; 100(3):753–758. doi:10.1152/japplphysiol.00697.2005.
  • Lessard MR, Lofaso F, Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;151(2):562–569. doi:10.1164/ajrccm.151.2.7842221.
  • Ninane V. “Intrinsic” PEEP (PEEPi): role of expiratory muscles. Eur Respir J. 1997; 10(3):516–518.
  • O'Donoghue FJ, Catcheside PG, Jordan AS, et al. Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD. Thorax. 2002;57(6):533–539. doi:10.1136/thorax.57.6.533.
  • Sahetya SK, Brower RG. The promises and problems of transpulmonary pressure measurements in acute respiratory distress syndrome. Curr Opin Crit Care. 2016; 22(1):7–13. doi:10.1097/MCC.0000000000000268.
  • Baydur A, Behrakis PK, Zin WA, et al. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982; 126(5):788–791. doi:10.1164/arrd.1982.126.5.788.
  • ATS/ERS. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002; 15166(4):518–624.
  • Jolley CJ, Luo YM, Steier J, et al. Neural respiratory drive and breathlessness in COPD. Eur Respir J. 2015; 45(2):355–364. doi:10.1183/09031936.00063014.
  • Murphy PB, Kumar A, Reilly C, et al. Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax. 2011;66(7):602–608. doi:10.1136/thx.2010.151332.
  • Suh ES, Mandal S, Harding R, et al. Neural respiratory drive predicts clinical deterioration and safe discharge in exacerbations of COPD. Thorax. 2015; 70(12):1123–1130. doi:10.1136/thoraxjnl-2015-207188.
  • Lopez-Barneo J, Ortega-Saenz P, Pardal R, et al. Carotid body oxygen sensing. Eur Respir J. 2008; 32(5):1386–1398. doi:10.1183/09031936.00056408.
  • Horn EM, Waldrop TG. Suprapontine control of respiration. Respir Physiol. 1998; 114(3):201–211. doi:10.1016/S0034-5687(98)00087-5.
  • Masaoka Y, Homma I. The effect of anticipatory anxiety on breathing and metabolism in humans. Respir Physiol. 2001;128(2):171–177. doi:10.1016/S0034-5687(01)00278-X.
  • Kinkead R, Tenorio L, Drolet G, et al. Respiratory manifestations of panic disorder in animals and humans: a unique opportunity to understand how supramedullary structures regulate breathing. Respir Physiol Neurobiol. 2014;204:3–13. 1doi:10.1016/j.resp.2014.06.013.
  • Casaburi R. The mechanism of the exercise hyperpnea: the ultrasecret revisited. Am J Respir Crit Care Med. 2012;186(7):578–579. 1doi:10.1164/rccm.201207-1278ED.
  • Tatar M, Hanacek J, Widdicombe J. The expiration reflex from the trachea and bronchi. Eur Respir J. 2008;31(2):385–390. doi:10.1183/09031936.00063507.
  • Faisal A, Alghamdi BJ, Ciavaglia CE, et al. Common mechanisms of dyspnea in chronic interstitial and obstructive lung disorders. Am J Respir Crit Care Med. 2016;193(3):299–309. doi:10.1164/rccm.201504-0841OC.
  • Jolley CJ, Luo YM, Steier J, et al. Neural respiratory drive in healthy subjects and in COPD. Eur Respir J. 2008; 33(2):289–297. doi:10.1183/09031936.00093408.
  • Druz WS, Sharp JT. Electrical and mechanical activity of the diaphragm accompanying body position in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1982;125(3):275–280. doi:10.1164/arrd.1982.125.3.275.
  • Reilly CC, Jolley CJ, Ward K, et al. Neural respiratory drive measured during inspiratory threshold loading and acute hypercapnia in healthy individuals. Exp Physiol. 2013; 98(7):1190–1198. doi:10.1113/expphysiol.2012.071415.
  • Luo YM, Li R, Jolley C, et al. Neural respiratory drive in patients with COPD during exercise tests. Respiration. 2011;81(4):294–301. doi:10.1159/000317136.
  • Petit JM, Milic-Emili G, Delhez L. Role of the diaphragm in breathing in conscious normal man: an electromyographic study. J Appl Physiol. 1960;15(6):1101–1106. Novdoi:10.1152/jappl.1960.15.6.1101.
  • Jolley CJ, Moxham J. A physiological model of patient-reported breathlessness during daily activities in COPD. Eur Respir Rev. 2009;18(112):66–79. doi:10.1183/09059180.00000809.
  • Luo YM, Moxham J. Measurement of neural respiratory drive in patients with COPD. Respir Physiol Neurobiol. 2005;146(2-3):165–174. doi:10.1016/j.resp.2004.12.014.
  • Gorini M, Spinelli A, Ginanni R, et al. Neural respiratory drive and neuromuscular coupling in patients with chronic obstructive pulmonary disease (COPD). Chest. 1990;98(5):1179–1186. doi:10.1378/chest.98.5.1179.
  • Luo YM, Hart N, Mustfa N, et al. Effect of diaphragm fatigue on neural respiratory drive. J Appl Physiol (Bethesda, Md: 1985). 2001;90(5):1691–1699. doi:10.1152/jappl.2001.90.5.1691.
  • Luo YM, Moxham J, Polkey MI. Diaphragm electromyography using an oesophageal catheter: current concepts. Clin Sci. 2008;115(8):233–244. doi:10.1042/CS20070348.
  • Steier J, Jolley CJ, Seymour J, et al. Increased load on the respiratory muscles in obstructive sleep apnea. Respir Physiol Neurobiol. 2010;171(1):54–60. 15doi:10.1016/j.resp.2010.01.012.
  • De Troyer A. Actions of the respiratory muscles or how the chest wall moves in upright man. Bull Eur Physiopathol Respir. 1984;20(5):409–413.
  • De Troyer A, Estenne M. Coordination between rib cage muscles and diaphragm during quiet breathing in humans. J Appl Physiol Respir Environ Exer Physiol. 1984;57(3):899–906. doi:10.1152/jappl.1984.57.3.899.
  • De Troyer A, Sampson MG. Activation of the parasternal intercostals during breathing efforts in human subjects. J Appl Physiol Respir Environ Exer Physiol. 1982;52(3):524–529. doi:10.1152/jappl.1982.52.3.524.
  • Hudson AL, Butler JE, Gandevia SC, et al. Interplay between the inspiratory and postural functions of the human parasternal intercostal muscles. J Neurophysiol. 2010;103(3):1622–1629. doi:10.1152/jn.00887.2009.
  • Maarsingh EJ, van Eykern LA, Sprikkelman AB, et al. Respiratory muscle activity measured with a noninvasive EMG technique: technical aspects and reproducibility. J Appl Physiol (Bethesda, Md: 1985). 2000;88(6):1955–1961. doi:10.1152/jappl.2000.88.6.1955.
  • Duiverman ML, van Eykern LA, Vennik PW, et al. Reproducibility and responsiveness of a noninvasive EMG technique of the respiratory muscles in COPD patients and in healthy subjects. J Appl Physiol (Bethesda, Md: 1985). 2004;96(5):1723–1729. doi:10.1152/japplphysiol.00914.2003.
  • Maarsingh EJ, Oud M, van Eykern LA, et al. Electromyographic monitoring of respiratory muscle activity in dyspneic infants and toddlers. Respir Physiol Neurobiol. 2006;150(2-3):191–199. 28doi:10.1016/j.resp.2005.05.029.
  • Maarsingh EJ, van Eykern LA, de Haan RJ, et al. Airflow limitation in asthmatic children assessed with a non-invasive EMG technique. Respir Physiol Neurobiol. 2002;133(1-2):89–97. 23doi:10.1016/S1569-9048(02)00130-1.
  • Reilly CC, Jolley CJ, Elston C, et al. Measurement of parasternal intercostal electromyogram during an infective exacerbation in patients with cystic fibrosis. Eur Respir J. 2012; 40(4):977–981. doi:10.1183/09031936.00163111.
  • Reilly CC, Ward K, Jolley CJ, et al. Neural respiratory drive, pulmonary mechanics and breathlessness in patients with cystic fibrosis. Thorax. 2011;66(3):240–246. doi:10.1136/thx.2010.142646.
  • Steier J, Jolley CJ, Polkey MI, et al. Nocturnal asthma monitoring by chest wall electromyography. Thorax. 2011;66(7):609–614. doi:10.1136/thx.2010.152462.
  • Fukuda T, Echeimberg J, Pompeu J, et al. Root mean square value of the electromyographic signal in the isometric torque of the quadriceps, hamstrings and brachial biceps muscles in female subjects. J Appl Res. 2010;10(1):32–39.
  • Fridlund AJ, Cacioppo JT. Guidelines for human electromyographic research. Psychophysiology. 1986;23(5):567–589. doi:10.1111/j.1469-8986.1986.tb00676.x.
  • Wu W, Guan L, Li X, et al. Correlation and compatibility between surface respiratory electromyography and transesophageal diaphragmatic electromyography measurements during treadmill exercise in stable patients with COPD. COPD. 2017;12:3273–3280. doi:10.2147/COPD.S148980.
  • Ramsook AH, Mitchell RA, Bell T, et al. Is parasternal intercostal EMG an accurate surrogate of respiratory neural drive and biomarker of dyspnea during cycle exercise testing? Respir Physiol Neurobiol. 2017;242:40–44. doi:10.1016/j.resp.2017.03.003.
  • Lapinsky SE, Easty AC. Electromagnetic interference in critical care. J Crit Care. 2006;21(3):267–270. doi:10.1016/j.jcrc.2006.03.010.
  • Bayford R. Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng. 2006;8(1):63–91. doi:10.1146/annurev.bioeng.8.061505.095716.
  • Brown BH. Electrical impedance tomography (EIT): a review. J Med Eng Technol. 2003;27(3):97–108. doi:10.1080/0309190021000059687.
  • Bodenstein M, David M, Markstaller K. Principles of electrical impedance tomography and its clinical application. Crit Care Med. 2009;37(2):713–724. doi:10.1097/CCM.0b013e3181958d2f.
  • Frerichs I, Amato MB, van Kaam AH, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72(1):83–93. doi:10.1136/thoraxjnl-2016-208357.
  • Frerichs I, Becher T, Weiler N. Methodology of electrical impedance tomography-derived measures of regional lung ventilation. Crit Care. 2014;18:Art. 635.
  • Costa EL, Lima RG, Amato MB. Electrical impedance tomography. Curr Opin Crit Care. 2009;15(1):18–24. doi:10.1097/MCC.0b013e3283220e8c.
  • Leonhardt S, Lachmann B. Electrical impedance tomography: the holy grail of ventilation and perfusion monitoring? Intensive Care Med. 2012;38(12):1917–1929. doi:10.1007/s00134-012-2684-z.
  • Luecke T, Corradi F, Pelosi P. Lung imaging for titration of mechanical ventilation. Curr Opin Anaesthesiol. 2012;25(2):131–140. doi:10.1097/ACO.0b013e32835003fb.
  • Lundin S, Stenqvist O. Electrical impedance tomography: potentials and pitfalls. Curr Opin Crit Care. 2012; 18(1):35–41. doi:10.1097/MCC.0b013e32834eb462.
  • Moerer O, Hahn G, Quintel M. Lung impedance measurements to monitor alveolar ventilation. Curr Opin Crit Care. 2011; 17(3):260–267. doi:10.1097/MCC.0b013e3283463c9c.
  • Muders T, Luepschen H, Putensen C. Impedance tomography as a new monitoring technique. Curr Opin Crit Care. 2010; 16(3):269–275. doi:10.1097/MCC.0b013e3283390cbf.
  • Adler A, Amyot R, Guardo R, et al. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol. 1997; 83(5):1762–1767. doi:10.1152/jappl.1997.83.5.1762.
  • Hinz J, Hahn G, Neumann P, et al. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med. 2003; 29(1):37–43. doi:10.1007/s00134-002-1555-4.
  • Marquis F, Coulombe N, Costa R, et al. Electrical impedance tomography's correlation to lung volume is not influenced by anthropometric parameters. J Clin Monit Comput. 2006; 20(3):201–207. doi:10.1007/s10877-006-9021-4.
  • Zhao Z, Moller K, Steinmann D, et al. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med. 2009; 35(11):1900–1906. doi:10.1007/s00134-009-1589-y.
  • Zhao Z, Steinmann D, Frerichs I, et al. PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010;14(1):R8. doi:10.1186/cc8860.
  • Wrigge H, Zinserling J, Muders T, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008; 36(3):903–909. doi:10.1097/CCM.0B013E3181652EDD.
  • Muders T, Luepschen H, Zinserling J, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med. 2012; 40(3):903–911. doi:10.1097/CCM.0b013e318236f452.
  • Balleza M, Calaf N, Feixas T, et al. [Measuring breathing pattern in patients with chronic obstructive pulmonary disease by electrical impedance tomography]. Archivos De Bronconeumologia. 2009;45(7):320–324. doi:10.1016/S1579-2129(09)72431-0.
  • Trenk F, Mendes L, Carvalho P, et al. Evaluation of lung ventilation distribution in chronic obstructive pulmonary disease patients using the global inhomogeneity index. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference; August 2016. p. 5286–5289.
  • Vogt B, Pulletz S, Elke G, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol (1985). 2012; 113(7):1154–1161. doi:10.1152/japplphysiol.01630.2011.
  • Vogt B, Zhao Z, Zabel P, et al. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;311(1):L8–l19. 1doi:10.1152/ajplung.00463.2015.
  • Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78(2):201–221.
  • Brandolese R, Broseghini C, Polese G, et al. Effects of intrinsic PEEP on pulmonary gas exchange in mechanically-ventilated patients. Eur Respir J. 1993;6(3):358–363.
  • Mauri T, Bellani G, Salerno D, et al. Regional distribution of air trapping in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(12):1466–1467. doi:10.1164/rccm.201303-0463IM.
  • Kostakou E, Barrett N, Camporota L. Electrical impedance tomography to determine optimal positive end-expiratory pressure in severe chronic obstructive pulmonary disease. Crit Care. 2016;20:295. doi:10.1186/s13054-016-1475-2.
  • Crabb M, Grychtol B, Lionheart W, et al. editors. EIT regional time constants. Proceedings of the 17th International Conference on Biomedical Applications of Electrical Impedance Tomography, personal communication; 2016.
  • R´Oka P, Waldmann A, Ender F, et al. Expiratory time constants by electrical impedance tomography in hypoxemic and hypercapnic acute lung failure – a feasibility study. Int Care Med Exp. 2015;3(Supp 1):495.
  • Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. Appl Physiol. 1970;28(5):596–608. doi:10.1152/jappl.1970.28.5.596.
  • Rabbani K, Kabir A. Studies on the effect of the third dimension on a two-dimensional electrical impedance tomography system. Clin Phys Physiol Meas. 1991;12(4):393. (293-402). doi:10.1088/0143-0815/12/4/009.
  • Lionheart W. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol Meas. 2004;25(1):125–142. doi:10.1088/0967-3334/25/1/021.
  • Adler A, Arnold JH, Bayford R, et al. GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol Meas. 2009; 30(6):S35–S55. doi:10.1088/0967-3334/30/6/S03.
  • Frerichs I, Dargaville PA, van Genderingen H, et al. Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med. 2006;1174(7):772–779. doi:10.1164/rccm.200512-1942OC.
  • Frerichs I, Pulletz S, Elke G, et al. Patient examinations using electrical impedance tomography–sources of interference in the intensive care unit. Physiol Meas. 2011; 32(12):L1–10. doi:10.1088/0967-3334/32/12/F01.
  • Becher T, Vogt B, Kott M, et al. Functional regions of interest in electrical impedance tomography: a secondary analysis of two clinical studies. PLoS ONE. 2016;2411(3):e0152267–16. doi:10.1371/journal.pone.0152267.
  • Pulletz S, van Genderingen HR, Schmitz G, et al. Comparison of different methods to define regions of interest for evaluation of regional lung ventilation by EIT. Physiol Meas. 2006; 27(5):S115–S27. doi:10.1088/0967-3334/27/5/S10.
  • Lowhagen K, Lundin S, Stenqvist O. Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome – assessed by electric impedance tomography. Minerva Anestesiol. 2010; 76(12):1024–1035.
  • Mauri T, Bellani G, Confalonieri A, et al. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support. Crit Care Med. 2013; 41(7):1664–1673. doi:10.1097/CCM.0b013e318287f6e7.
  • Frerichs I, Dargaville PA, Dudykevych T, et al. Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution?. Intensive Care Med. 2003;29(12):2312–2316. doi:10.1007/s00134-003-2029-z.
  • Pulletz S, Kott M, Elke G, et al. Dynamics of regional lung aeration determined by electrical impedance tomography in patients with acute respiratory distress syndrome. J Crit Care. 2012;157(1):1–1.
  • Miedema M, de Jongh FH, Frerichs I, et al. Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants. Intensive Care Med. 2012; 38(2):294–299. doi:10.1007/s00134-011-2410-2.
  • Frerichs I, Dargaville PA, Rimensberger PC. Regional respiratory inflation and deflation pressure-volume curves determined by electrical impedance tomography. Physiol Meas. 2013; 34(6):567–577. doi:10.1088/0967-3334/34/6/567.
  • Miedema M, de Jongh FH, Frerichs I, et al. Changes in lung volume and ventilation during surfactant treatment in ventilated preterm infants. Am J Respir Crit Care Med. 2011;184(1):100–105. 1doi:10.1164/rccm.201103-0375OC.
  • Miedema M, de Jongh FH, Frerichs I, et al. Changes in lung volume and ventilation during lung recruitment in high-frequency ventilated preterm infants with respiratory distress syndrome. J Pediatr. 2011;159(2):199–205.e2. doi:10.1016/j.jpeds.2011.01.066.
  • März A, Ukere A, Wodack K, et al. Perioperative assessment of regional ventilation during changing body positions and ventilation conditions by electrical impedance tomography with increased spatial resolution and signal quality. Crit Care. 2015;19(Suppl 1):P249. doi:10.1186/cc14329.
  • Karagiannidis C, Waldmann AD, Roka PL, et al. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Crit Care. 2018;22(1):221. 21doi:10.1186/s13054-018-2137-3.
  • Becher T, Kott M, Schadler D, et al. Influence of tidal volume on ventilation inhomogeneity assessed by electrical impedance tomography during controlled mechanical ventilation. Physiol Meas. 2015; 36(6):1137–1146. doi:10.1088/0967-3334/36/6/1137.
  • Zhao Z, Pulletz S, Frerichs I, et al. The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome. BMC Res Notes. 2014;7(1):82. doi:10.1186/1756-0500-7-82.
  • Frerichs I, Achtzehn U, Pechmann A, et al. High-frequency oscillatory ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease. J Crit Care. 2012; 27(2):172–181. doi:10.1016/j.jcrc.2011.04.008.
  • Riedel T, Kyburz M, Latzin P, et al. Regional and overall ventilation inhomogeneities in preterm and term-born infants. Intensive Care Med. 2009; 35(1):144–151. doi:10.1007/s00134-008-1299-x.
  • Frerichs I, Zhao Z, Becher T, et al. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas. 2016; 37(6):698–712. doi:10.1088/0967-3334/37/6/698.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.