3,403
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review

, , , , ORCID Icon & ORCID Icon
Pages 333-342 | Received 12 Mar 2020, Accepted 04 Jun 2020, Published online: 19 Jun 2020

References

  • Vestbo J, Hurd SS, Rodriguez‐Roisin R. The 2011 revision of the global strategy for the diagnosis, management and prevention of COPD (GOLD)-why and what? Clin Respir J. 2012;6(4):208–214. doi:10.1111/crj.12002.
  • Shapiro SD, Ingenito EP. The pathogenesis of chronic obstructive pulmonary disease: advances in the past 100 years. Am J Respir Cell Mol Biol. 2005;32(5):367–372. doi:10.1165/rcmb.F296.
  • Marwick JA, Kirkham PA, Stevenson CS, et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol. 2004;31(6):633–642. doi:10.1165/rcmb.2004-0006OC.
  • Pandey R, Singh M, Singhal U, et al. Oxidative/nitrosative stress and the pathobiology of chronic obstructive pulmonary disease. J Clin Diagn Res. 2013;7(3):580–588. doi:10.7860/JCDR/2013/4360.2832.
  • Rahman I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: cellular and molecular mechanisms. Cell Biochem Biophys. 2005;43(1):167–188. doi:10.1385/CBB:43:1:167.
  • Rahman I, Adcock I. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28(1):219–242. doi:10.1183/09031936.06.00053805.
  • Adcock IM, Ford P, Ito K, et al. Epigenetics and airways disease. Respir Res. 2006;7(1):21. doi:10.1186/1465-9921-7-21.
  • Gosden RG, Feinberg AP. Genetics and epigenetics—nature’s pen-and-pencil set. N Engl J Med. 2007;356(7):731–733. doi:10.1056/NEJMe068284.
  • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–719. doi:10.1016/j.cell.2007.01.015.
  • Yang IV, Schwartz DA. Epigenetic control of gene expression in the lung. Am J Respir Crit Care Med. 2011;183(10):1295–1301. doi:10.1164/rccm.201010-1579PP.
  • Aslani S, Jafari N, Javan MR, et al. Epigenetic modifications and therapy in multiple sclerosis. Neuromolecular Med. 2017;19(1):11–23. doi:10.1007/s12017-016-8422-x.
  • Wu D-D, Song J, Bartel S, et al. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther. 2018;182:1–14. doi:10.1016/j.pharmthera.2017.08.007.
  • Kamrani A, Alipourfard I, Ahmadi‐Khiavi H, et al. The role of epigenetic changes in preeclampsia. Biofactors. 2019;45(5):712–724. doi:10.1002/biof.1542.
  • Comer BS, Ba M, Singer CA, et al. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther. 2015;147:91–110. doi:10.1016/j.pharmthera.2014.11.006.
  • Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–744. doi:10.1038/nature03868.
  • Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci Usa. 2007;104(23):9667–9672. doi:10.1073/pnas.0703820104.
  • Ahmadi M, Gharibi T, Dolati S, et al. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother. 2017;87:596–608. doi:10.1016/j.biopha.2016.12.072.
  • Zong D, Ouyang R, Chen P. Epigenetic mechanisms in chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2015;19(5):844–856.
  • Rajendrasozhan S, Yao H, Rahman I. Current perspectives on role of chromatin modifications and deacetylases in lung inflammation in COPD. COPD. 2009;6(4):291–297. doi:10.1080/15412550903049132.
  • Wang Z, Schones DE, Zhao K. Characterization of human epigenomes. Curr Opin Genet Dev. 2009;19(2):127–134. doi:10.1016/j.gde.2009.02.001.
  • Peng H, Guo T, Chen Z, et al. Hypermethylation of mitochondrial transcription factor A induced by cigarette smoke is associated with chronic obstructive pulmonary disease. Exp Lung Res. 2019;45(3–4):101–111. doi:10.1080/01902148.2018.1556748.
  • Lee MK, Xu C-J, Carnes MU, et al. Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults. Clin Epigenet. 2019;11(1):37. doi:10.1186/s13148-019-0635-z.
  • Tzortzaki EG, Papi A, Neofytou E, et al. Immune and genetic mechanisms in COPD: possible targets for therapeutic interventions. Curr Drug Targets. 2013;14(2):141–148. doi:10.2174/1389450111314020002.
  • Qiu W, Baccarelli A, Carey VJ, et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am J Respir Crit Care Med. 2012;185(4):373–381. doi:10.1164/rccm.201108-1382OC.
  • Bruscia EM, Bonfield TL. Cystic fibrosis lung immunity: the role of the macrophage. J Innate Immun. 2016;8(6):550–563. doi:10.1159/000446825.
  • West J. Regional differences in gas exchange in the lung of erect man. J Appl Physiol. 1962;17(6):893–898. doi:10.1152/jappl.1962.17.6.893.
  • Armstrong DA, Chen Y, Dessaint JA, et al. DNA Methylation Changes in Regional Lung Macrophages Are Associated with Metabolic Differences. IH. 2019;3(7):274–281. doi:10.4049/immunohorizons.1900042.
  • Nakahira K, Hisata S, Choi AM. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid Redox Signal. 2015;23(17):1329–1350. doi:10.1089/ars.2015.6407.
  • Remels A, Schrauwen P, Broekhuizen R, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J. 2007;30(2):245–252. doi:10.1183/09031936.00144106.
  • Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta. 2012;1819(9-10):921–929. doi:10.1016/j.bbagrm.2012.03.002.
  • Patel V, Kantipudi N, Jones G, et al. Air pollution and cardiovascular disease: a review. Crit Rev Biomed Eng. 2016;44(5):327–346. doi:10.1615/CritRevBiomedEng.2017019768.
  • Adam M, Schikowski T, Carsin AE, et al. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis. Eur Respir J. 2015;45(1):38–50. doi:10.1183/09031936.00130014.
  • Clifford RL, Fishbane N, Patel J, et al. Altered DNA methylation is associated with aberrant gene expression in parenchymal but not airway fibroblasts isolated from individuals with COPD. Clin Epigenetics. 2018;10(1):32. doi:10.1186/s13148-018-0464-5.
  • Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009;374(9691):733–743. doi:10.1016/S0140-6736(09)61303-9.
  • Gan WQ, FitzGerald JM, Carlsten C, et al. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am J Respir Crit Care Med. 2013;187(7):721–727. doi:10.1164/rccm.201211-2004OC.
  • Gershon A, Campitelli MA, Hwee J, et al. Socioeconomic status, sex, age and access to medications for COPD in Ontario, Canada. COPD. 2015;12(6):668–679. doi:10.3109/15412555.2015.1020148.
  • Hazari YM, Bashir A, Habib M, et al. Alpha-1-antitrypsin deficiency: genetic variations, clinical manifestations and therapeutic interventions. Mutat Res. 2017;773:14–25. doi:10.1016/j.mrrev.2017.03.001.
  • Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502–513. doi:10.1242/dev.098186.
  • Park K-S, Korfhagen TR, Bruno MD, et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest. 2007;117(4):978–988. doi:10.1172/JCI29176.
  • Tang X, Liu XJ, Tian C, et al. Foxa2 regulates leukotrienes to inhibit Th2-mediated pulmonary inflammation. Am J Respir Cell Mol Biol. 2013;49(6):960–970. doi:10.1165/rcmb.2013-0122OC.
  • Song J, Heijink I, Kistemaker L, et al. Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD. Clin Epigenetics. 2017;9(1):42. doi:10.1186/s13148-017-0341-7.
  • Pfaff M, Powaga N, Akinci S, et al. Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways. Respir Res. 2005;6(1):48. doi:10.1186/1465-9921-6-48.
  • Barnawi J, Tran H, Jersmann H, et al. Potential link between the sphingosine-1-phosphate (S1P) system and defective alveolar macrophage phagocytic function in chronic obstructive pulmonary disease (COPD). PLoS One. 2015;10(10):e0122771. doi:10.1371/journal.pone.0122771.
  • Barnawi J, Jersmann H, Haberberger R, et al. Reduced DNA methylation of sphingosine-1 phosphate receptor 5 in alveolar macrophages in COPD: A potential link to failed efferocytosis. Respirology. 2017;22(2):315–321. doi:10.1111/resp.12949.
  • Sundar IK, Yin Q, Baier BS, et al. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenetics. 2017;9(1):38. doi:10.1186/s13148-017-0335-5.
  • Liu J-P, Baker J, Perkins AS, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993;75(1):59–72.
  • Epaud R, Aubey F, Xu J, et al. Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis. PLoS One. 2012;7(11):e48071. doi:10.1371/journal.pone.0048071.
  • Meyer KF, Krauss-Etschmann S, Kooistra W, et al. Prenatal exposure to tobacco smoke sex dependently influences methylation and mRNA levels of the Igf axis in lungs of mouse offspring. Am J Physiol Lung Cell Mol Physiol. 2017;312(4):L542–L555. doi:10.1152/ajplung.00271.2016.
  • Vucic EA, Chari R, Thu KL, et al. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am J Respir Cell Mol Biol. 2014;50(5):912–922. doi:10.1165/rcmb.2013-0304OC.
  • Adcock IM, Tsaprouni L, Bhavsar P, et al. Epigenetic regulation of airway inflammation. Curr Opin Immunol. 2007;19(6):694–700. doi:10.1016/j.coi.2007.07.016.
  • Szulakowski P, Crowther AJ, Jiménez LA, et al. The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;174(1):41–50. doi:10.1164/rccm.200505-725OC.
  • Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–840. doi:10.1126/science.1175371.
  • Moresi V, Carrer M, Grueter CE, et al. Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc Natl Acad Sci USA. 2012;109(5):1649–1654. doi:10.1073/pnas.1121159109.
  • Ding J, Li F, Cong Y, et al. Trichostatin A inhibits skeletal muscle atrophy induced by cigarette smoke exposure in mice. Life Sci. 2019;235:116800. doi:10.1016/j.lfs.2019.116800.
  • Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell. 2017;65(1):8–24. doi:10.1016/j.molcel.2016.11.003.
  • Shin H-J, Kim H, Oh S, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534(7608):553–557. doi:10.1038/nature18014.
  • Kuhn P, Chumanov R, Wang Y, et al. Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res. 2011;39(7):2717–2726. doi:10.1093/nar/gkq1246.
  • Sarker RS, Conlon TM, Morrone C, et al. CARM1 regulates senescence during airway epithelial cell injury in COPD pathogenesis. Am J Physiol Lung Cell Mol Physiol. 2019;317(5):602–661. doi:10.1152/ajplung.00441.2018.
  • Sotty J, Garçon G, Denayer F-O, et al. Toxicological effects of ambient fine (PM2. 5-0.18) and ultrafine (PM0. 18) particles in healthy and diseased 3D organo-typic mucocilary-phenotype models. Environ Res. 2019;176:108538. doi:10.1016/j.envres.2019.108538.
  • López‐Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology. 2016;21(1):14–23. doi:10.1111/resp.12660.
  • Sundar IK, Yao H, Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal. 2013;18(15):1956–1971. doi:10.1089/ars.2012.4863.
  • Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest. 2013;144(1):266–273. doi:10.1378/chest.12-2664.
  • Vachharajani VT, Liu T, Wang X, et al. Sirtuins link inflammation and metabolism. J Immunol Res. 2016;2016:8167273. doi:10.1155/2016/8167273.
  • Kim S-Y, Zhang Q, Brunmeir R, et al. SIRT1 Interacts with and Deacetylates ATP6V1B2 in Mature Adipocytes. PLoS One. 2015;10(7):e0133448. doi:10.1371/journal.pone.0133448.
  • Polesskaya A, Naguibneva I, Duquet A, et al. Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol Cell Biol. 2001;21(16):5312–5320. doi:10.1128/MCB.21.16.5312-5320.2001.
  • Ma N, Deng T-T, Wang Q, et al. Erythromycin regulates cigarette smoke-induced proinflammatory mediator release through sirtuin 1-nuclear factor κB axis in macrophages and mice lungs. Pathobiology. 2019;86(5–6):237–247. doi:10.1159/000500628.
  • Hwang J-w, Rajendrasozhan S, Yao H, et al. FOXO3 deficiency leads to increased susceptibility to cigarette smoke-induced inflammation, airspace enlargement, and chronic obstructive pulmonary disease. J Immunol. 2011;187(2):987–998. doi:10.4049/jimmunol.1001861.
  • Di Vincenzo S, Heijink IH, Noordhoek JA, et al. SIRT1/FoxO3 axis alteration leads to aberrant immune responses in bronchial epithelial cells. J Cell Mol Med. 2018;22(4):2272–2282. doi:10.1111/jcmm.13509.
  • Ito K, Hanazawa T, Tomita K, et al. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun. 2004;315(1):240–245. doi:10.1016/j.bbrc.2004.01.046.
  • Osoata GO, Yamamura S, Ito M, et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun. 2009;384(3):366–371. doi:10.1016/j.bbrc.2009.04.128.
  • Chung K, Adcock I. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008;31(6):1334–1356. doi:10.1183/09031936.00018908.
  • Ruan Y, Shen T, Wang Y, et al. Antimicrobial peptide LL-37 attenuates LTA induced inflammatory effect in macrophages. Int Immunopharmacol. 2013;15(3):575–580. doi:10.1016/j.intimp.2013.01.012.
  • Weng J-Z, Wang Y, Sun T-Y. Cathelicidin LL-37 restoring glucocorticoid function in smoking and lipopolysaccharide-induced airway inflammation in rats. Chin Med J. 2019;132(5):569.
  • Ichiyama T, Hasegawa S, Matsubara T, et al. Theophylline inhibits NF-kappa B activation and I kappa B alpha degradation in human pulmonary epithelial cells . Naunyn Schmiedebergs Arch Pharmacol. 2001;364(6):558–561. doi:10.1007/s00210-001-0494-x.
  • Yang S-R, Chida AS, Bauter MR, et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages . Am J Physiol Lung Cell Mol Physiol. 2006;291(1):L46–L57. doi:10.1152/ajplung.00241.2005.
  • Bin Y, Xiao Y, Huang D, et al. Theophylline inhibits cigarette smoke-induced inflammation in skeletal muscle by upregulating HDAC2 expression and decreasing NF-κB activation. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L197–L205. doi:10.1152/ajplung.00005.2018.
  • Yamamoto Y, Verma UN, Prajapati S, et al. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature. 2003;423(6940):655–659. doi:10.1038/nature01576.
  • Redhu N, Gounni A. Function and mechanisms of TSLP/TSLPR complex in asthma and COPD. Clin Exp Allergy. 2012;42(7):994–1005. doi:10.1111/j.1365-2222.2011.03919.x.
  • Anzalone G, Albano GD, Montalbano AM, et al. IL-17A-associated IKK-α signaling induced TSLP production in epithelial cells of COPD patients. Exp Mol Med. 2018;50(10):1–12. doi:10.1038/s12276-018-0158-2.
  • Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–567. doi:10.1038/nri2586.
  • Doe C, Bafadhel M, Siddiqui S, et al. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest. 2010;138(5):1140–1147. doi:10.1378/chest.09-3058.
  • Lai T, Tian B, Cao C, et al. HDAC2 suppresses IL17A-mediated airway remodeling in human and experimental modeling of COPD. Chest. 2018;153(4):863–875. doi:10.1016/j.chest.2017.10.031.
  • Zeki AA, Franzi L, Last J, et al. Simvastatin inhibits airway hyperreactivity: implications for the mevalonate pathway and beyond. Am J Respir Crit Care Med. 2009;180(8):731–740. doi:10.1164/rccm.200901-0018OC.
  • Davis BB, Zeki AA, Bratt JM, et al. Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy. Eur Respir J. 2013;42(2):350–361. doi:10.1183/09031936.00042512.
  • Matera MG, Calzetta L, Gritti G, et al. Role of statins and mevalonate pathway on impaired HDAC2 activity induced by oxidative stress in human airway epithelial cells. Eur J Pharmacol. 2018;832:114–119. doi:10.1016/j.ejphar.2018.05.023.
  • Barnes P, Adcock I, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J. 2005;25(3):552–563. doi:10.1183/09031936.05.00117504.
  • Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009;373(9678):1905–1917. doi:10.1016/S0140-6736(09)60326-3.
  • Gan L, Li C, Wang J, et al. Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model. COPD. 2016;11:2765–2773. doi:10.2147/COPD.S113978.
  • Cheetham S, Gruhl F, Mattick J, et al. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108(12):2419–2425. doi:10.1038/bjc.2013.233.
  • Qu X, Dang X, Wang W, et al. Long noncoding RNAs and mRNA regulation in peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease. Mediat Inflamm. 2018;2018:1–14. doi:10.1155/2018/7501851.
  • Qi X, Chen H, Fu B, et al. lncrnas nr-026690 and ensT00000447867 are upregulated in CD4+ T cells in patients with acute exacerbation of COPD. COPD. 2019;14:699–711. doi:10.2147/COPD.S191815.
  • Nair GB, Niederman MS. Ventilator-associated pneumonia: present understanding and ongoing debates. Intensive Care Med. 2015;41(1):34–48. doi:10.1007/s00134-014-3564-5.
  • Nseir S, Di Pompeo C, Soubrier S, et al. Impact of ventilator-associated pneumonia on outcome in patients with COPD. Chest. 2005;128(3):1650–1656. doi:10.1378/chest.128.3.1650.
  • Zhao X, Feng J, Zhang L, et al. One functional variant in the 3′‐untranslated region of TLR4 is associated with the elevated risk of ventilator‐associated pneumonia in the patients with chronic obstructive pulmonary disease. J Cell Physiol. 2019;234(10):18879–18886. doi:10.1002/jcp.28526.
  • Jalali S, Ramanathan GK, Parthasarathy PT, et al. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One. 2012;7(10):e46808. doi:10.1371/journal.pone.0046808.
  • Donaldson A, Natanek SA, Lewis A, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax. 2013;68(12):1140–1149. doi:10.1136/thoraxjnl-2012-203129.
  • Sun Y, An N, Li J, et al. miRNA-206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease. J Cell Biochem. 2019;120(4):6223–6236. doi:10.1002/jcb.27910.
  • Cai S, Chen P, Zhang C, et al. Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology. 2009;14(3):354–359. doi:10.1111/j.1440-1843.2009.01511.x.
  • Long Y-J, Liu X-P, Chen S-S, et al. miR-34a is involved in CSE-induced apoptosis of human pulmonary microvascular endothelial cells by targeting Notch-1 receptor protein. Respir Res. 2018;19(1):21. doi:10.1186/s12931-018-0722-2.
  • Takada H, Kurisaki A. Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging. Cell Mol Life Sci. 2015;72(21):4015–4025. doi:10.1007/s00018-015-1984-1.
  • Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–482. doi:10.1093/ajcn/84.3.475.
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–531. doi:10.1038/nrg1379.
  • Connolly M, Paul R, Farre‐Garros R, et al. miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting. J Cachexia Sarcopenia Muscle. 2018;9(2):400–416. doi:10.1002/jcsm.12266.
  • Yao J, Liang L-h, Zhang Y, et al. GNAI1 suppresses tumor cell migration and invasion and is post-transcriptionally regulated by Mir-320a/c/d in hepatocellular carcinoma. Cancer Biol Med. 2012;9(4):234–241. doi:10.7497/j.issn.2095-3941.2012.04.003.
  • Karch A, COSYCONET Study Group, Vogelmeier C, Welte T, et al. The German COPD cohort COSYCONET: Aims, methods and descriptive analysis of the study population at baseline. Respir Med. 2016;114:27–37. doi:10.1016/j.rmed.2016.03.008.
  • Sekine Y, Katsura H, Koh E, et al. Early detection of COPD is important for lung cancer surveillance. Eur Respir J. 2012;39(5):1230–1240. doi:10.1183/09031936.00126011.
  • Keller A, Ludwig N, Fehlmann T, et al. Low miR-150-5p and miR-320b Expression Predicts Reduced Survival of COPD Patients. Cell J. 2019;8(10):1162. doi:10.3390/cells8101162.
  • Taganov KD, Boldin MP, Chang K-J, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103(33):12481–12486. doi:10.1073/pnas.0605298103.
  • Mohamed A, Pekoz AY, Ross K, et al. Pulmonary delivery of Nanocomposite Microparticles (NCMPs) incorporating miR-146a for treatment of COPD. Int J Pharm. 2019;569:118524. doi:10.1016/j.ijpharm.2019.118524.
  • Putra AC, Tanimoto K, Arifin M, et al. Genetic variations in detoxification enzymes and HIF-1α in Japanese patients with COPD. Clin Respir J. 2013;7(1):7–15. doi:10.1111/j.1752-699X.2011.00255.x.
  • Cai J, Wu J, Zhang H, et al. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res. 2013;73(2):756–766. doi:10.1158/0008-5472.CAN-12-2651.
  • Lin L, Sun J, Wu D, et al. MicroRNA-186 is associated with hypoxia-inducible factor-1α expression in chronic obstructive pulmonary disease . Mol Genet Genomic Med. 2019;7(3):e531. doi:10.1002/mgg3.531.
  • Hassan F, Xu X, Nuovo G, et al. Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels. Respir Res. 2014;15(1):69. doi:10.1186/1465-9921-15-69.
  • Asker S, Asker M, Yeltekin AC, et al. Serum levels of trace minerals and heavy metals in severe COPD patients with and without pulmonary hypertension. Int J Chron Obstruct Pulmon Dis. 2018;13:1803–1808. doi:10.2147/COPD.S164431.
  • Kim J, Kim DY, Heo H-R, et al. Role of miRNA-181a-2-3p in cadmium-induced inflammatory responses of human bronchial epithelial cells. J Thorac Dis. 2019;11(7):3055–3069. doi:10.21037/jtd.2019.07.55.
  • Santos S, Peinado VI, Ramirez J, et al. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J. 2002;19(4):632–638. doi:10.1183/09031936.02.00245902.
  • Nazari-Jahantigh M, Wei Y, Schober A. The role of microRNAs in arterial remodelling. Thromb Haemost. 2012;107(4):611–618. doi:10.1160/TH11-12-0826.
  • Musri MM, Coll-Bonfill N, Maron BA, et al. MicroRNA Dysregulation in Pulmonary Arteries from Chronic Obstructive Pulmonary Disease. Relationships with Vascular Remodeling. Am J Respir Cell Mol Biol. 2018;59(4):490–499. doi:10.1165/rcmb.2017-0040OC.
  • Stafford JL, Neumann NF, Belosevic M. Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol. 2002;28(3):187–248. doi:10.1080/1040-840291046731.
  • Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5:435. doi:10.3389/fimmu.2014.00435.
  • Caito S, Yang S-R, Kode A, et al. Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2, PPARgamma agonists, differentially regulate cigarette smoke-mediated pro-inflammatory cytokine release in monocytes/macrophages. Antioxid Redox Signal. 2008;10(2):253–260. doi:10.1089/ars.2007.1889.
  • Wang D, He S, Liu B, et al. MiR-27-3p regulates TLR2/4-dependent mouse alveolar macrophage activation by targetting PPARγ. Clin Sci. 2018;132(9).
  • Togo S, Holz O, Liu X, et al. Lung fibroblast repair functions in patients with chronic obstructive pulmonary disease are altered by multiple mechanisms. Am J Respir Crit Care Med. 2008;178(3):248–260. doi:10.1164/rccm.200706-929OC.
  • Ikari J, Smith LM, Nelson AJ, et al. Effect of culture conditions on microRNA expression in primary adult control and COPD lung fibroblasts in vitro. In Vitro Cell Dev Biol Anim. 2015;51(4):390–399. doi:10.1007/s11626-014-9820-8.
  • Ikari J, Nelson AJ, Obaid J, et al. Reduced microRNA-503 expression augments lung fibroblast VEGF production in chronic obstructive pulmonary disease. PLoS One. 2017;12(9):e0184039. doi:10.1371/journal.pone.0184039.
  • Shen Z, Tang W, Guo J, et al. miR-483-5p plays a protective role in chronic obstructive pulmonary disease. Int J Mol Med. 2017;40(1):193–200. doi:10.3892/ijmm.2017.2996.
  • Leidinger P, Keller A, Borries A, et al. Specific peripheral miRNA profiles for distinguishing lung cancer from COPD. Lung Cancer. 2011;74(1):41–47. doi:10.1016/j.lungcan.2011.02.003.
  • Shaw JG, Vaughan A, Dent AG, et al. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J Thorac Dis. 2014;6(11):1532–1547. doi:10.3978/j.issn.2072-1439.2014.11.33.
  • Wang R, Xu J, Liu H, et al. Peripheral leukocyte microRNAs as novel biomarkers for COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:1101–1112. doi:10.2147/COPD.S130416.
  • Conickx G, Mestdagh P, Avila Cobos F, et al. MicroRNA profiling reveals a role for microRNA-218-5p in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;195(1):43–56. doi:10.1164/rccm.201506-1182OC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.