770
Views
1
CrossRef citations to date
0
Altmetric
Articles

S100A9/CD163 Expression in Circulating Classical Monocytes in Chronic Obstructive Pulmonary Disease

ORCID Icon, &
Pages 587-594 | Received 18 Jan 2020, Accepted 06 Jul 2020, Published online: 23 Sep 2020

References

  • Nagai A , West WW , Paul JL , et al. The National Institutes of Health Intermittent Positive-Pressure Breathing trial: pathology studies. I. Interrelationship between morphologic lesions. Am Rev Respir Dis. 1985;132(5):937–945. DOI:10.1164/arrd.1985.132.5.937
  • McDonough JE , Yuan R , Suzuki M , et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–1575. DOI:10.1056/NEJMoa1106955
  • Gan WQ , Man SF , Senthilselvan A , et al. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–580. DOI:10.1136/thx.2003.019588
  • Mannino DM , Ford ES , Redd SC . Obstructive and restrictive lung disease and markers of inflammation: data from the Third National Health and Nutrition Examination. Am J Med. 2003;114(9):758–762. DOI:10.1016/S0002-9343(03)00185-2
  • Seymour JM , Spruit MA , Hopkinson NS , et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J. 2010;36(1):81–88. DOI:10.1183/09031936.00104909
  • Kunik ME , Roundy K , Veazey C , et al. Surprisingly high prevalence of anxiety and depression in chronic breathing disorders. Chest. 2005;127(4):1205–1211. DOI:10.1378/chest.127.4.1205
  • Dahl M , Vestbo J , Lange P , et al. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(3):250–255. DOI:10.1164/rccm.200605-713OC
  • Kony S , Zureik M , Driss F , et al. Association of bronchial hyperresponsiveness and lung function with C-reactive protein (CRP): a population based study. Thorax. 2004;59(10):892–896. DOI:10.1136/thx.2003.015768
  • Celli BR , Locantore N , Yates J , et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(10):1065–1072. DOI:10.1164/rccm.201110-1792OC
  • Lozano R , Naghavi M , Foreman K , et al. A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–2128. DOI:10.1016/S0140-6736(12)61728-0
  • Burney P , Jarvis D , Perez-Padilla R . The global burden of chronic respiratory disease in adults. Int J Tuberc Lung Dis. 2015;19(1):10–20. DOI:10.5588/ijtld.14.0446
  • Cazzola M , Molimard M . The scientific rationale for combining long-acting beta2-agonists and muscarinic antagonists in COPD. Pulm Pharmacol Ther. 2010;23(4):257–267. DOI:10.1016/j.pupt.2010.03.003
  • Mahler DA , Decramer M , D’Urzo A , et al. Dual bronchodilation with QVA149 reduces patient-reported dyspnoea in COPD: the BLAZE study. Eur Respir J. 2014;43(6):1599–1609. DOI:10.1183/09031936.00124013
  • Mahler DA , Kerwin E , Ayers T , et al. FLIGHT1 and FLIGHT2: efficacy and safety of QVA149 (indacaterol/glycopyrrolate) versus its monocomponents and placebo in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(9):1068–1079. DOI:10.1164/rccm.201505-1048OC
  • Wedzicha JA , Decramer M , Ficker JH , et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med. 2013;1(3):199–209. DOI:10.1016/S2213-2600(13)70052-3
  • Auffray C , Sieweke MH , Geissmann F . Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009; 27:669–692. DOI:10.1146/annurev.immunol.021908.132557
  • Ziegler-Heitbrock L , Ancuta P , Crowe S , et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–e80. DOI:10.1182/blood-2010-02-258558
  • Geissmann F , Jung S , Littman DR . Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71–82. DOI:10.1016/S1074-7613(03)00174-2
  • Murray PJ , Wynn TA . Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–737. DOI:10.1038/nri3073
  • Mantovani A , Sica A , Sozzani S , et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–686. DOI:10.1016/j.it.2004.09.015
  • MacMicking J , Xie QW , Nathan C . Nitric oxide and macrophage function. Annu Rev Immunol. 1997; 15:323–350. DOI:10.1146/annurev.immunol.15.1.323
  • Mills CD , Kincaid K , Alt JM , et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–6173. DOI:10.4049/jimmunol.164.12.6166
  • Mills CD . Anatomy of a discovery: m1 and m2 macrophages. Front Immunol. 2015; 6:212. DOI:10.3389/fimmu.2015.00212
  • Stein M , Keshav S , Harris N , et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–292. DOI:10.1084/jem.176.1.287
  • Doyle AG , Herbein G , Montaner LJ , et al. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol. 1994;24(6):1441–1445. DOI:10.1002/eji.1830240630
  • Wynn TA . Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–594. DOI:10.1038/nri1412
  • Auffray C , Fogg D , Garfa M , et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007;317(5838):666–670. DOI:10.1126/science.1142883
  • Cornwell WD , Kim V , Fan X , et al. Activation and polarization of circulating monocytes in severe chronic obstructive pulmonary disease. BMC Pulm Med. 2018;18(1):101 DOI:10.1186/s12890-018-0664-y
  • Eapen MS , Hansbro PM , McAlinden K , et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep. 2017;7:13392.
  • Kunz LI , Lapperre TS , Snoeck-Stroband JB , et al. Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD. Respir Res. 2011;12:34.
  • Antunes MA , Abreu SC , Cruz FF , et al. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res. 2014;15:118. DOI:10.1186/s12931-014-0118-x
  • He Z , Riva M , Björk P , et al. CD14 is a co-receptor for TLR4 in the S100A9-induced pro-inflammatory response in monocytes. PLoS One. 2016;11(5):e0156377. DOI:10.1371/journal.pone.0156377
  • Manferdini C , Paolella F , Gabusi E , et al . Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation. Osteoarthr Cartil. 2017;25(7):1161–1171. DOI:10.1016/j.joca.2017.01.011
  • Kristiansen M , Graversen JH , Jacobsen C , et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201. DOI:10.1038/35051594
  • Verreck FA , de Boer T , Langenberg DM , et al. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol. 2006;79(2):285–293. DOI:10.1189/jlb.0105015
  • Ehrchen JM , Sunderkötter C , Foell D , et al. The endogenous toll-like receptor 4 agonist S100A8/S100A9 (Calprotectin) as innate amplifier of infection autoimmunity, and cancer. J Leuko Biol. 2009;86(3):557–566. DOI:10.1189/jlb.1008647
  • Bjork P , Bjork A , Vogl T , et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009;7(4):e1000097. DOI:10.1371/journal.pbio.1000097
  • Chakraborty P , Bjork P , Källberg E , et al. Vesicular location and transport of S100A8 and S100A9 proteins in monocytoid cells. PLoS One. 2015;10(12):e0145217. DOI:10.1371/journal.pone.0145217
  • Wang S , Song R , Wang Z , et al. S100A8/A9 in inflammation. Front Immunol. 2018;9:1298. DOI:10.3389/fimmu.2018.01298
  • Pouwels SD , Nawijn MC , Bathoorn E , et al. Increased serum levels of LL37, HMGB1 and S100A9 during exacerbation in COPD patients. Eur Respir J. 2015;45(5):1482–1485. DOI:10.1183/09031936.00158414
  • Kubota M , Kobayashi H , Quanjer PH , et al. Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values. Respir Investig. 2014;52(4):242–250. DOI:10.1016/j.resinv.2014.03.003
  • Bazzan E , Turato G , Tinè M , et al. Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity. Respir Res. 2017; 18:40.
  • Rendra E , Riabov V , Mossel DM , et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242–253. DOI:10.1016/j.imbio.2018.11.010
  • Min D , Brooks B , Wong J , et al. Monocyte CD163 is altered in association with diabetic complications: possible protective role. J Leukoc Biol. 2016;100(6):1375–1383. DOI:10.1189/jlb.3A1015-461RR
  • Costantini A , Viola N , Berretta A , et al. Age-related M1/M2 phenotype changes in circulating monocytes from healthy/unhealthy individuals. Aging. 2018;10(6):1268–1280. DOI:10.18632/aging.101465
  • Kim J , Kim HY , Song SY , et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano. 2019;13(3):3206–3217. DOI:10.1021/acsnano.8b08785
  • Yuan Y , Chen Y , Peng T , et al. Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin Sci (Lond). 2019;133(15):1759–1777. DOI:10.1042/CS20190672
  • Oliveira da Silva C , Monte-Alto-Costa A , et al. Time course of the phenotype of blood and bone marrow monocytes and macrophages in the lung after cigarette smoke exposure in vivo. Int J Mol Sci. 2017;18:1940.
  • Sin DD , Leung R , Gan WQ , et al. Circulating surfactant protein D as a potential lung-specific biomarker of health outcomes in COPD: a pilot study. BMC Pulm Med. 2007;7:13. DOI:10.1186/1471-2466-7-13
  • Ambade VN , Sontakke AN , Barthwal MS , et al. Diagnostic utility of biomarkers in COPD. Respir Care. 2015;60(12):1729–1742. DOI:10.4187/respcare.03753

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.