133
Views
24
CrossRef citations to date
0
Altmetric
Research Article

BMP Regulation of the Mouse Connexin43 Promoter in Osteoblastic Cells and Embryos

, , , , &
Pages 37-50 | Published online: 11 Jul 2009

  • Becker DL, McGonnell I, Makarenkova HP, Patel K, Tickle C, Lorimer J, Green CR (1999). Roles for al connexin in morphogenesis of chick embryos revealed using a novel antisense approach. Dev Genet 24: 33-42.
  • Bennett MVL, Barrio LC, Bargiello TA, Spray OC, Hertzberg E, Saez JC (1991). Gap junctions: New tools. New answers. New questions. Neuron 6: 305-320.
  • Buckland RA, Collinson JM, Graham E, Davidson DR, Hill RE (1998). Antagonistic effects of FGF-4 on BMP induction of apoptosis and chrondrogensis in the chick limb bud. Mech Development 71: 143-150.
  • Chen P, Carrington JL, Hammonds RG, Reddi AH ( 1991 ). Stimulation of chondrogenesis in limb bud cells by recombinant human bone morphogenetic protein 2B (BMP2B) and modulation by transforming growth factor bl and b2. Exp Cell Res 195: 509-515.
  • Civitelli R, Ziambaras K, Warlow PM, Lecanda F, Nelson T, Harley J, Atal N, Beyer EC, Steinberg TH (1998). Regulation of connexin 43 expression and function by prostaglandin E2 (PGE2) and parathyroid hormone (PTH) in osteoblastic cells. J Cell Biochem 68: 8-21.
  • Coelho CND, Kosher RA (1991). Gap junctional communication during limb cartilage differentation. Dev Biol 144: 47-53.
  • Denker AE, Haas AR, Nicoll SB,Tuan RS (1999). Chondrogenic differentiaton of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogeneitc protein-2 in high density micromass cultures. Differen 64: 67-76.
  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998). Direct binding of Smad 3 and Smad 4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO 17: 3091-3100.
  • Duke J, Elmer WA (1978). Cell adhesion and chondrogenesis in brachypod mouse limb mesenchyme: Fragment fusion studies. J Embryol Exp Morph 48: 161-168.
  • Echelard Y, Vassileva G, McMahon AP (1994). Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development 120:2213-2224.
  • Erlacher L, McCartney J, Piek E, ten Dijke P, Yanagishita M, Oppermann H, Luyten FP (1998). Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogenesis. J Bone Miner Res 13: 383-392.
  • Francis-West PH, Abdelfattah A, Chen P, Alien C, Parish J, Ladher R, Alien S, MacPherson S, Luyton FP, Archer CW (1999). Mechanisms of GDF-5 action during skeletal develoment. Development 126: 1305-1315.
  • Grüneberg H, Lee AJ (1973). The anatomy and development of brachypodism in the mouse. J Embryol Exp Morphol 30: 119-141.
  • Haas AR, Tuan RS (1999). Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differen 64: 77-89.
  • Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massague J (2000). OAZ uses distinct DNA- and protein binding zinc fingers in separate BMp-smad and Olf signaling pathways. Cell 100:229-240.
  • Henningfeld KA, Rastegar S, Adler G, Knochel W (2000). Smad 1 and Smad 4 are components of the BMP-4 induced transcription complex of the Xvent-2B promoter. J Biol Chem 275: 21827-21835.
  • Hogan BL (1996). Bone morphogenetic proteins: Multifunctional regulators of vertebrate development. Genes Dev 10: 1580-1594.
  • Hotten GC, Matsumoto T, Kimura M, Bechtold RF, Kron R, Ohara T, Tanaka H, Satoh Y, Okazaki M, Shirai T, Pan H, Kawai S, Pohl JS, Kudo A (1996). Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors 13: 65-74.
  • Itoh S, Itoh F, Goumans MJ, Ten Dijke P (2000). Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem 267: 6954-6956.
  • King JA, Marker PC, Wonjune K, Seunge J, Kingsley DM (1994). BMPs and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166: 112-122.
  • Kingsley DM, Bland AE, Grabber JM, Marker PC, Russel LB, Copeland NG, Jenkins NA (1992). The mouse short ear skeletal morphogenesis locus is associated with defects in bone morphogenetic member of the TGFb superfamily. Cell 71: 399-410.
  • Kretzschmar M, Massague J (1998). SMADS: Mediators and regulators of TGF-b signaling. Curr Opin in Genet and Dev 8: 103-111.
  • Kumar NM, GiIuIa NB (1996). The gap junction communication channel. Cell 84: 381-388.
  • Leboy PH, Grasso-Knight G, D'Angelo M, Volk SW, Lian JB, Drissi H, Stein GS, Adams SL (2001). Smad-Runx interaction during chondryocyte maturation. J of Bone and Joint Surgery 83:S1-S15.
  • Lecanda F, Towler DA, Ziambaras K, Cheng S-L, Koval M, Steinberg TH, Civitelli R (1998). Gap junction communication modulates gene expression in osteoblastic cells. MoI Biol Cell 9: 2249-2258.
  • Lecanda F, Warlo PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R (2000). Connexin 43 deficiency causes delayed ossification, craniofacial abnormalities and osteoblast dysfunction. J Cell Biol 151: 931-943.
  • Lee K-S, Kirn H-J, Li Q-L, Chi X-Z, Ueta C, Komori T, Wozney JM, Kim E-J, Choi, J-Y, Ryoo H-M, Bae S-C (2000). Runx 2 is a common target of transforming growth factor b1 and bone morphogenetic protein 2, and cooperation between Runx2 and smad5 induces osteoblast-specific gene expression in pluripotent mesenchymal precursor cell line C2C12. MoI CellBlol20:8783-8792.
  • Lo CW, Cohen MF, Huang GF, Lazatin BO, Patel N, Sullivan R, Pauken C, Park SM (1997). Cx43 gap junction gene expression and gap junction communication in mouse neural crest cells. Dev Genet 20: 119-132.
  • Makarenkova H, Patel K (1999). Gap junction signalling mediated through connexin-43 is required for chick limb development. Dev Biol 207: 380-392.
  • Macias D, Gattan Y, Sampath TK, Piedra ME, Ros MA, Hurle JM (1997). Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124: 1109-1117.
  • Massague J, Chen YG (2000). Controlling TGF-ß signaling. Genes Develop 14:627-644.
  • Mayor C, Brudno M, Schwarte JR, Poliakov A, Rubin EM, Frzer KA, Pachter LS, Dubchak I (2000). VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046-1047.
  • Mehler MF, Mabie PC, Zhang D, Kessler JA (1997). Bone morphogenetic proteins in the nervous system. Trends Neurosci 20: 309-317.
  • Merino R, Macias D, Ganan Y, Economides AN, Wang X, Wu Q, Stahl N, Sampath KT, Varona P, Hurle JM (1999). Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206: 33-45.
  • Meyer RA, Cohen MF, Recalde S, Zakany J, Bell SM, Scott WJ, Lo CW (1997). Developmental regulation and asymmetric expression of the gene encoding Cx43 gap junctions in the mouse limb bud. Dev Genet 21:290-300.
  • Oberlander SA, Tuan RS (1994). Expression and functional involvement of N-cadherin in embyronic limb chondrogenesis. Develop 120: 177-187.
  • Owens EM, Solursh M (1983). Accelerated maturation of the limb mesenchyme by the BrachypodH mouse mutation. Differen 24: 145-148.
  • Polinkovsky A, Robin NH, Thomas T, Irons M, Lynn A, Goodman FR, Reardon W, Kant SG, Brunner HG, Vender Burgt I, Chitayat D, McGaughran J, Donnai D, Luyten FP, Warman ML (1997). Mutations in CDMPl cause autosomal dominant brachydactyly type C. Nature Genet 17: 18-19.
  • Reddi AH (1998). Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotech 16: 247-252.
  • Rosen V, Thies RS, Lyons K (1996). Signaling pathways in skeletal formation: A role for BMP receptors. Ann NY Acad Sci 785: 59-69.
  • Ruangvoravat CP, Lo CW (1992). Connexin 43 expression in the mouse embryo: Localization of transcripts within developmentally significant domains. Dev Dynamics 194: 261-281.
  • Saez JC, Berthoud VM, Moreno AP, Spray DC (1993). Gap junctions: Multiplicity of controls in differentiated and undifferentiated cells and possible functional implications. In: S Shenolikar, AC Nairn, eds. Advances in Second Messenger and Phosphoprotein Research, Vol. 27, pp. 162-198. Raven Press, New York.
  • Shi Y, Wang Y-F, Jauaraman L, Yang H, Massague J, Pavletich NP (1998). Crystal structure of Smad MH1 domain bound to DNA: Insights on DNA binding in TGF-ß signalling. Cell 94: 585-594.
  • Steinberg TH, Civitelli R, Geist ST, Robertson AJ, Hick E, Veenstra RD, Wang HZ, Warlow PM, Westphale EM, Laing JG, Beyer EC (1994). Connexin43 and connexin45 from gap junctions with different molecular permeabilities in osteoblastic cells. EMBO J 13: 744-750.
  • Storm EE, Huynh TV, Copeland NG, Jenkin NA, Kingsley DM, Lee SJ (1994). Limb alterations in brachypodism mice due to mutations in a new member of the TGF-b superfamily. Nature 368: 639-643.
  • Storm EE, Kingsley DM (1996). Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122: 3969-3979.
  • Storm ES, Kingsley DM (1999). GDF-5 coordinates bone and joint formation during digit development. Dev Biol 209: 11-27.
  • Thomas JT, Kilpatrick MW, Lim K, Erlacher K, Lembessis P, Costa T, Tsipouras P, Luyten FP (1997). Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nature Genet 17: 58-64.
  • Thomas JT, Lin K, Nadedkar M, Camargo M, Cervenka J, Luyten FP (1996). A human chondrodysplasia due to mutation in a TGF-beta superfamily member. Nature Genet 12: 315-317.
  • Wawersik S, Epstein JA (2000). Gene expression analysis by in situ hybridization. In: RS Tuan and CW Lo, eds. Dev. Biol. Protocols III, pp. 87-96. Humana Press, Totowa, NJ.
  • Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio Smith E, Nave J, Song JJ, Wozney JM, Rosen V (1997). Ectopic induction of tendon and ligaments in rats by Growth and differentiation factor 5, 6 and 7, members of the TGF-beta gene family. J Clin Invest 100: 321-330.
  • Wozney JM, Rosen V (1998). Bone morphogenetic protein and bone morphogenetic proetin gene family in bone formation and repair. Clin Orthopaedics & Related Res 346: 26-37.
  • Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang FA (1984). Novel regulators of bone formation: Molecular clones and activities. Science 242: 1528-1534.
  • Wrana, JL (2000). Regulation of Smad activity. Cell 100: 189-192.
  • Wyatt LE, Chung CY, Carlsen B, lida-Klein A, Rudkin GH, Ishida K, Yamaguchi DT, Miller TA (2001). Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-b1 (TGF-B1) alter connexin 43 phosphorylation in MC3T3-E1 Cells. BMC Cell Bio 2: 14-19.
  • Yamaji N, Celeste AJ, Thies RS, Song JJ, Bernier SM, Goltzman D, Lyons KM, Nove J, Rosen V, Wozney JM (1994). A mammalian serine/threonine kinase receptor specifically binds BMP-2 and BMP-4. Biochem Biophys Res Commun. 205:1944-1951.
  • Yamashita H, Shimizu A, Kato M, Nishitoh H, Ichijo H, Hanyu A, Morita I, Kimura M, Makishima F, Miyazono K (1997). Growth/differentiation factor-5 induces angiogenesis in vivo. Exp Cell Res 235: 218-226.
  • Yancey SB, Biswal S, Revel JP (1992). Spatial and temporal patterns of distribution of the gap junction protein connexin43 during mouse gastrulation and organogenesis. Development 114: 203-212.
  • Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE (1998). Human Smad3 and Smad4 are sequencespecific transcription activators. MoI Cell 1: 611-617.
  • Zhang W, Green C, Stott NS (2002). Bone morphogenetic protein-2 modulation of chondrogenic differentiation in vitro involves gap junction-mediated intercellular communication. J CeIl Physiol 193: 233-243.
  • Zou H, Niswander L (1996). Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272: 738-741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.