273
Views
2
CrossRef citations to date
0
Altmetric
LOW-DIMENSIONAL SOLIDS AND MOLECULAR CRYSTALS

Inkjet Printed Poly(3-hexylthiophene) Thin-Film Transistors: Effect of Self-Assembled Monolayer

, , , , , , & show all

References

  • Braga, D., & Horowitz, G. (2009). High-performance organic field-effect transistors. Adv. Mater., 21, 1473–1486.
  • Sirringhaus, H., Bird, M., Richards, T., & Zhao, N. (2010). Charge transport physics of conjugated polymer field-effect transistors. Adv. Mater., 22, 3893–3898.
  • Tobjork, D., & Osterbacka, R. (2011). Paper electronics. Adv. Mater., 23, 1935–1961.
  • Anthony, J.E. (2008). The larger acenes: Versatile organic semiconductors. Angew. Chem. Int. Ed., 47, 452–483.
  • Głowacki, E.D., Irimia-Vladu, M., Kaltenbrunner, M., Gsiorowski, J., White, M.S., Monkowius, U., Romanazzi, G., Suranna, G.P., Mastrorilli, P., Sekitani, T., Bauer, S., Someya, T., Torsi, L., & Sariciftci, N.S. (2013). Hydrogen-bonded semiconducting pigments for air-stable field-effect transistors. Adv. Mater., 25, 1563–1569.
  • Bao, Z., Dodabalapur, A., & Lovinger, A.J. (1996). Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett., 69, 4108–4110.
  • Wang, C.L., Dong, H.L., Hu, W.P., Liu, Y.Q., & Zhu, D.B. (2012). Semiconducting pi-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev., 112, 2208–2267.
  • Smith, J., Hamilton, R., McCulloch, I., Stingelin-Stutzmann, N., Heeney, M., Bradley, D.D. C., & Anthopoulos, T.D. (2010). Solution-processed organic transistors based on semiconducting blends. J. Mater. Chem., 20, 2562–2574.
  • Rogers, J.A., Bao, Z.N., Makhija, A., & Braun, P. (1999). Printing process suitable for reel-to-reel production of high-performance organic transistors and circuits. Adv. Mater., 11, 741–745.
  • Kang, H., Kitsomboonloha, R., Jang, J., & Subramanian, V. (2012). High-performance printed transistors realized using femtoliter gravure-printed sub-10 μm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers. Adv. Mater., 24, 3065–3069.
  • Hwang, J.K., Cho, S., Dang, J.M., Kwak, E.B., Song, K., Moon, J., & Sung, M.M. (2010). Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding. Nat. Nanotechnol., 5, 742–748.
  • Hansen, C.J., Saksena, R., Kolesky, D.B., Vericella, J.J., Kranz, S.J., Muldowney, G.P., Christensen, K.T., & Lewis, J.A. (2013). High-throughput printing via microvascular multinozzle arrays. Adv. Mater., 25, 96–102.
  • Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., & Woo, E.P. (2000). High-resolution inkjet printing of all-polymer transistor circuits. Science, 290, 2123–2126.
  • Sekitani, T., Noguchi, Y., Zschieschang, U., Klauk, H., & Someya, T. (2008). Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. PNAS, 105, 4976–4980.
  • James, D.T., Kjellander, B.K. C., Smaal, W.T. T., Gelinck, G.H., Combe, C., McCulloch, I., Wilson, R., Burroughes, J.H., Bradley, D.D. C., & Kim, J.S. (2011). Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized raman spectroscopy: Effect of blending TIPS-pentacene with insulating polymer. Acs Nano, 5, 9824–9835.
  • Singh, M., Haverinen, H.M., Dhagat, P., & Jabbour, G.E. (2010). Inkjet printing-process and its applications. Adv. Mater., 22, 673–685.
  • Madec, M.B., Smith, P.J., Malandraki, A., Wang, N., Korvink, J.G., & Yeates, S.G. (2010). Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends. J. Mater. Chem., 20, 9155–9160.
  • Tseng, H.Y., & Subramanian, V. (2011). All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org. Electron., 12, 249–256.
  • Arias, A.C., Daniel, J., Sambandan, S., Ng, T.N., Russo, B., Krusor, B., & Street, R.A. (2008). All printed thin film transistors for flexible electronics. Proceedings of the SPIE - The International Society for Optical Engineering, 2008, 70540L-70541-70547.
  • Lim, J.A., Kim, J.H., Qiu, L., Lee, W.H., Lee, H.S., Kwak, D., & Cho, K. (2010). Inkjet-printed single-droplet organic transistors based on semiconductor nanowires embedded in insulating polymers. Adv. Funct. Mater., 20, 3292–3297.
  • Chang, P.C., Lee, J., Huang, D., Subramanian, V., Murphy, A.R., & Frechet, J.M. J. (2004). Film morphology and thin film transistor performance of solution-processed oligothiophenes. Chem. Mater., 16, 4783–4789.
  • Plotner, M., Wegener, T., Richter, S., Howitz, S., & Fischer, W.J. (2004). Investigation of ink-jet printing of poly-3-octylthiophene for organic field-effect transistors from different solutions. Synth. Met., 147, 299–303.
  • Lee, S.H., Choi, M.H., Han, S.H., Choo, D.J., Jang, J., & Kwon, S.K. (2008). High-performance thin-film transistor with 6,13-bis(triisopropylsilylethynyl) pentacene by inkjet printing. Org. Electron., 9, 721–726.
  • Kline, R.J., McGehee, M.D., & Toney, M.F. (2006). Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater., 5, 222–228.
  • Yoon, M.H., Kim, C., Facchetti, A., & Marks, T.J. (2006). Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc., 128, 12851–12869.
  • Majewski, L., & Grell, M. (2005). Organic field-effect transistors with ultrathin modified gate insulator. Synth. Met., 151, 175–179.
  • Veres, J., Ogier, S., Lloyd, G., & De Leeuw, D. (2004). Gate insulators in organic field-effect transistors. Chem. Mater., 16, 4543–4555.
  • Salleo, A., Chabinyc, M.L., Yang, M.S., & Street, R.A. (2002). Polymer thin-film transistors with chemically modified dielectric interfaces. Appl. Phys. Lett., 81, 4383–4385.
  • Kobayashi, S., Nishikawa, T., Takenobu, T., Mori, S., Shimoda, T., Mitani, T., Shimotani, H., Yoshimoto, N., Ogawa, S., & Iwasa, Y. (2004). Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater., 3, 317–322.
  • Wu, Y.O., Liu, P., Ong, B.S., Srikumar, T., Zhao, N., Botton, G., & Zhu, S.P. (2005). Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors. Appl. Phys. Lett., 86.
  • Wang, X.H., Xiong, X.F., Qiu, L.Z., & Qiang Lv, G. (2012). Morphology of inkjet printed 6, 13 bis (tri-isopropylsilylethynyl) pentacene on surface-treated silica. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 30, . 021206-021206-021206.
  • Lim, J.A., Lee, W.H., Kwak, D., & Cho, K. (2009). Evaporation-induced self-organization of inkjet-printed organic semiconductors on surface-modified dielectrics for high-performance organic transistors. Langmuir, 25, 5404–5410.
  • Yang, H.C., Shin, T.J., Yang, L., Cho, K., Ryu, C.Y., & Bao, Z.N. (2005). Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Adv. Funct. Mater., 15, 671–676.
  • Chang, J.F., Sun, B.Q., Breiby, D.W., Nielsen, M.M., Solling, T.I., Giles, M., McCulloch, I., & Sirringhaus, H. (2004). Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater., 16, 4772–4776.
  • Kim, D.H., Jang, Y., Park, Y.D., & Cho, K. (2006). Controlled one-dimensional nanostructures in poly(3-hexylthiophene) thin film for high-performance organic field-effect transistors. J. Phys. Chem. B, 110, 15763–15768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.