991
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A Classification of Separation Methods

Pages 1-27 | Received 05 Dec 2012, Accepted 30 Jan 2014, Published online: 20 Oct 2015

REFERENCES

  • Valcarcel, M. and Luque de Castro, M.D. (1991) Non-chromatographic Continuous Separation Techniques; Royal Society of Chemistry: Cambridge, UK.
  • Otto, M. (2011) Analytische Chemie; Wiley-VCH: Weinheim, Germany.
  • Kellner, R., Mermet, J.-M., Otto, M., Valcárcel, M., and Widmer, H.M. (2004) Analytical Chemistry: A Modern Approach to Analytical Science; Wiley-VCH Verlag: Weinheim.
  • Karger, B.L., Snyder, L.R., and Horvath, C. (1973) An Introduction to Separation Science; John Wiley & Sons: New York.
  • Giddings, J.C. (1978) Basic approaches to separation. Analysis and classification of methods according to underlying transport characteristics. Sep. Sci. Technol., 13: 3–24.
  • Giddings, J.C. (1991) Unified Separation Science; John Wiley & Sons: New York.
  • Macasek, F. and Navratill, J.D. (1992) Separation Chemistry; Ellis Horwood Limited: Chichester, UK.
  • Ahuja, S. (2003) Chromatography and Separation Science; Academic Press: New York.
  • Sun, H., Ge, X., Lv. Y., and Wang, A. (2012) Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J. Chromatogr. A, 1237: 1–23.
  • Pico, Y. (2013) Ultrasound-assisted extraction for food and environmental samples. Trends Anal. Chem. 43: 84–99.
  • Michel, T., Destandau, E., and Elfakir, C. (2011) Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn (Hippophaë rhamnoides L.) berries: Pressurized solvent-free microwave assisted extraction. Food Chem., 126: 1380–1386.
  • Herrero, M., Castro-Puyana, M., Mendiola, J.A., and Ibanez, E. (2013) Compressed fluids for the extraction of bioactive compounds. Trends Anal. Chem., 43: 67–83.
  • Zolotov, Yu. A. (1970) Extraction of Chelate Compounds; Humphrey Science Publishers: Ann Arbor, MI.
  • Zolotov, Yu.A. (1997) Macrocyclic Compounds in Analytical Chemistry; Wiley: New York.
  • Menon, S.K., Hirpara, S.V., and Harikrishnan, U. (2004) Synthesis and applications of cryptands. Rev. Anal. Chem., 23: 233–268.
  • Sun, P. and Armstrong, D.W. (2010) Ionic liquids in analytical chemistry. Anal. Chim. Acta, 661: 1–16.
  • Vidal, L., Riekkola, M.-L., and Canals, A. (2012) Ionic liquid-modified materials for solid-phase extraction and separation: A review. Anal. Chim. Acta, 715: 19–41.
  • Treybal, R.E. (1963) Liquid Extraction; McGraw-Hill: New York.
  • Valcárcel, M. and Luque de Castro, M.D. (1991) Liquid-liquid systems, In Non-chromatographic Continuous Separation Techniques; Royal Society of Chemistry: Cambridge, 115–122.
  • Souverain, S., Rudaz, S., and Veuthey, J.-L.(2004) Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis (Review). J. Chromatogr. B, 801: 141–156.
  • Hage, D.S., Anguizola, J.A., Bi, C., Li, R., Matsuda, R., Papastavros, E., Pfaunmiller, E., Vargas, J., and Zheng, X. (2012) Pharmaceutical and biomedical applications of affinity chromatography: Recent trend and developments. J. Pharm. Biomed. Anal., 69: 93–105.
  • Ravelo-Perez, L.M., Herrera-Herrera, A.V., Hernández-Borges, J., and Rodríguez-Delgado, M.Á. (2010) Carbon nanotubes: Solid-phase extraction. J. Chromatogr. A, 1217: 2618–2641.
  • Clearfield, A. (2000) Inorganic ion exchangers, past, present and future. Solvent Extr. Ion Exch., 18: 655–678.
  • Zagorodni, A.A. (2006) Ion Exchange Materials: Properties and Applications; Elsevier: Amsterdam, the Netherlands.
  • Herling, H.R. (1967) Chelatbildende Ionenaustauschern; Akademie-Verlag: Berlin, Germany.
  • Sellergren, B. (2001) Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry; Elsevier: Amsterdam.
  • Andersson, L.I. (2001) Selective solid-phase extraction of bio- and environmental samples using molecularly imprinted polymers. Bioseparation, 10: 353–364.
  • Haginaka, I. (2004) Molecularly imprinted polymers for solid-phase extraction. Anal. Bioanal. Chem., 379: 332–338.
  • Hu, S., Li L., and He, X. (2005) Molecularly imprinted polymers: A new kind of sorbent with high selectivity in solid phase extraction. Progr. Chem., 17: 531–543.
  • Thurman, E.M. and Mills, M.S. (1998) Solid-Phase Extraction; Wiley: New York.
  • Ioffe, B.V. and Vitenberg, A.G. (1984) Head-Space Analysis and Related Methods in Gas Chromatography; Wiley: New York.
  • Melnick, L.M., Levis, L.L., and Holt, B.D. (1975) Determination of Gaseous Elements in Metals; Wiley-Interscience: New York.
  • Chary, N.S. and Fernandez-Alba, A.R. (2012) Determination of volatile organic compounds in drinking and environmental waters. Trends Anal. Chem., 32: 60–75.
  • Enokida, Y., Sawada, K., Shimada, T., and Yamamoto, I., (2007). An option making for nuclear fuel reprocessing by using supercritical carbon dioxide. Global 2007: Advanced Nuclear Fuel Cycles and Systems; American Nuclear Society: Boise, ID, 1029–1032.
  • Moskvin, L.N., Gorshkov, A.I., and Gumerov, M.F. (1982) Liquid-gas partition chromatography. Dokl. Akad. Nauk SSSR, 265: 378–382.
  • Moskvin, L.N. and Rodinkov, O.V. (1994) Analytical application of liquid-gas and liquid-gas-solid chromatography. Crit. Rev. Anal. Chem., 24: 317–325.
  • Giddings J.C. and Myers M.N. (1983) Liquid-gas partition chromatography (LGC): An LC system with a gaseous stationary phase for gas analysis. J. High Resolut. Chromatogr., 6: 381–382.
  • Gama, M.R., Silva, R.G.C., Collins, C.H., and Bottoli, C.B.G. (2012) Hydrophilic interaction liquid chromatography. Trends Anal. Chem., 37: 48–60.
  • Jennissen, H.P. (2000) Hydrophobic interaction chromatography. In: Wilson, I.D., Adlard, T.R., Poole, C., and Cooke, M., eds.; Encyclopedia of Separation Science, 2: 265–272; Academic Press: New York.
  • Braun, T. and Ghersini, G. (1975) Extraction Chromatography; Elsevier Scientific: Amsterdam and New York.
  • Cecchi, T. Ion-Pair Chromatography and Related Techniques; CRC Press: New York and London.
  • Anton, K., Eppinger, J., Frederiksen, L., Francotte, E., Berger, T.A., and Wilson, W.H. (1994) Chiral separation by packed-column super- and subcritical fluid chromatography. J. Chromatogr. A, 666: 395–401.
  • Moskvin, L.N. and Rodinkov, O.V. (2004) Liquid-gas adsorption chromatography. J. Anal. Chem. 59: 1165–1170.
  • Jiang, T., Jiskra, J., Claessens, H.A., and Cramers, C. A. (2001) Preparation and characterization of monolithic polymer columns for capillary electrochromatography. J. Chromatogr. A., 923: 215–227.
  • Martin, A.J.P. (1949) Summarizing paper. Disc. Far. Soc. 7:332–336.
  • Sussman, N.V. and Huang, C.C. (1967) Continuous gas chromatography. Science, 156: 974–976.
  • Cole, L.G. and Hall, L.G. Chromatography. U.S. Patent, 2,891,630, June 23, 1959.
  • Heaton, W.B. Chromatographic method and apparatus. U.S. Patent, 3,077,103, February 12, 1963.
  • Mosier, L.C. Continuous gas chromatography U.S. Patent, 3,078,647, February 26, 1963.
  • Moskvin, L.N. and Tsaritsina, L.G. (1970) Continuous chromatographic separation of a multicomponent mixture of substances in liquid-liquid partition chromatography. II. Performance of the device and position elution maximums. Radiokhimiya, 12: 731–736.
  • Kozhin, S.A., Moskvin, L.N., Fleisher, A.Yu., and Epifanova, I.O. (1973) Separation of essential oils by liquid- liquid reversed-phase partition chromatography. Zh. Obshch. Khim., 43: 428–434.
  • Moskvin, L.N., Mozkuhin, A.V., and Tsaritsina, L.G. (1975) Continuous chromatographic separation of a multicomponent mixture in ion-exchange chromatography. Zh. Anal. Khim., 30: 39–43.
  • Taramasso, M. (1970) Considerations for the design of a rotating unit for continuous production by gas chromatography and its applications. J. Chromatogr., 49: 27–35.
  • Khun, W., Narten, A., and Thürkauf, M. (1958) Kontinuierliche Gas-Chromatographie (Verfahren Zur kontinuierlichen Trennung eines Gemishes mit mehreren Komponenten in einem Zweiphasen-Gegenstrom mit Temperaturgefälle). 1. Mitteilung. Helv. Chim. Acta, 41: 2135–2148.
  • Ito, Y. and Conway, W.D. (1984) Development of countercurrent chromatography. Anal. Chem. 56: 534A–539A.
  • Imanoglu, S. (2002) Simulated moving bed chromatography (SMB) for application in bioseparation. Adv. Biochem. Eng. Biotechnol., 76: 212–230.
  • Pais, L.S., Loureiro, J.M., and Rodrigues, A.E. (2000) Chiral separation by SMB chromatography. Sep. Purif. Technol., 20: 67–77.
  • Hahn-Deinstrop, E. (2007) Applied Thin-layer Chromatography; Wiley-VCH: Weinheim.
  • Epimakhov, V.N. and Moskvin, L.N. (2007) Further development of express chromatographic radiochemical analysis as applied to process and radioecological monitoring in nuclear power engineering. Radiochemistry, 49: 210–214.
  • Fekete, S., Kohler, I., Rudaz, S., and Guillarme, D. (2014) Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal., 87: 105–119.
  • Hwang, S.-T. and Kammermeyer, K. (1975) Membranes in Separation; John Wiley & Sons: New York.
  • Moskvin, L.N. and Chereshkevich, Yu.L. (1971) Transport through extraction electrodialysis membranes. Radiokhimiya, 13: 768–770.
  • Bloch, R., Kedem O., Vofsi, D. (1963) Ion specific polymer membrane. Nature, 199: 802–803.
  • Li, N.N. Separating hydrocarbons with liquid membranes. U.S. Patent, 3,410,794, November 12, 1968.
  • Chimuka, L., Cukrowska, E., Michel, M., and Buszewski, B. (2011) Advance in sample preparation using membrane-based liquid-phase microextraction techniques. Trends Anal. Chem., 30: 1781–1792.
  • Baker, R.W. (2004) Membrane Technology and Applications; John Wiley & Sons: Chichester, UK.
  • Moskvin, L.N., Kalinin, N.N., Godon, L.A. (1974) Electroosmotic concentration of anions from extremely diluted aqueous solutions. Soviet Atomic Energy, 36: 247–250.
  • Moskvin, L.N., Epymakhov, L.V., and Gursky, V.S. (1992) Electroosmotic concentration of cations and anions for the analysis of high-purity water. Zh. Anal. Khim., 47(7): 1265–1268.
  • Moskvin, L.N., Godon, L.A., and Epimakhova, L.V. (1986) Thorough purification of water by an electroosmotic method. J. Applied Chem. USSR, 59: 484–487.
  • Sourirajan, S. (1970) Reverse Osmosis; Academic Press: New York and London.
  • Kucera, J. (2010) Reverse Osmosis: Design, Process and Application for Engineers; Wiley-Scrivener: New York.
  • Giddings, J.C., Fisher, S.R., and Myers, M.N. (1978) Field-flow fractionation – One phase chromatography for macromolecules and particles. Am. Lab. 10: 15.
  • Budzikiewicz, H. and Schäfer, M. (2012) Massenspektrometrie - Eine Einführung; Wiley-VCH: Weinheim.
  • Attria, K.D. (1995) Capillary Electrophoresis Guidebook - Principles, Operation and Applications; Humana Press: Totowa, NJ.
  • Wahlund, K.-G. (2013) Flow field-flow fractionation: Critical review. J. Chromatogr. A, 1287: 97–112.
  • Bokhan, P.A., Buchanov, V.V., Fateev, N.V., Kalugin, M.M., Kazaryan, M.A., Prokhorov, A.M., and Zakrevskĭi, D.E. (2006) Laser Isotope Separation in Atomic Vapor; Wiley-VCH: Weinheim.
  • Sayama, K., Abe, R., Arakawa, H., and Sugihara, H. (2006) Decomposition of water into H2 and O2 by a two-step photoexcitation reaction over a Pt-TiO2 photocatalyst in NaNO2 and Na2CO3 aqueous solution. Catal. Commun., 7: 96–99.
  • Deyl, Z. and Svec, F. (2001) Capillary Electrochromatography; Elsevier: Amsterdam.
  • Lämmerhofer, M. and Gargano, A. (2010) Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography. J. Pharm. Biomed. Anal., 53: 1091–1123.
  • Vindevogel, J. and Sandra, P. (1992) Introduction to Micellar Electrokinetic Chromatography; Hüthig: Heidelberg, Germany.
  • Silva, M. (2013) Micellar electrokinetic chromatography: a review of methodological and instrumental innovations focusing on practical aspects. Electrophoresis, 34(1): 141–158.
  • Pappas, T.J., Gayton-Ely, M., and Holland, L.A. (2005) Recent advances in miccllar elektrokinetic chromatography. Electrophoresis, 26; 719–734.
  • Moskvin, L.N. (1994) Chromatomembrane method for the continuous separation of substances. J. Chromatogr. A, 669: 81–89.
  • Moskvin, L.N. and Rodinkov, O.V. (2012) Chromatomembrane methods: physicochemical principles, analytical and technological possibilities. Russ. Chem. Bull., 61: 723–740.
  • Moskvin, A.L., Moskvin, L.N., Moszhuchin, A.V., and Fomin, V.V. (1999) Extraction-chromatographic preconcentration with chromatomembrane separation of extract from aqueous phase for luminescence determination of oil products and phenols in natural water by flow injection analysis. Talanta, 50: 113–120.
  • Moskvin, L.N. and Rodinkov, O.V. (1996) Continuous chromatomembrane headspace analysis. J. Chromatogr. A, 725: 351–359.
  • Erxleben, H., Moskvin, L.N., Nikitina, T.G., and Simon, J. (1998) Determination of small quantities of nitrogen oxides in air by ion chromatography using a chromatomembrane cell for preconcentration. Fres. J. Anal. Chem., 361: 324–325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.