947
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Forward Osmosis Membranes for Water Reclamation

, , &
Pages 93-107 | Received 27 May 2013, Accepted 05 Sep 2014, Published online: 04 Nov 2015

REFERENCES

  • Wiesner, M.R. and Chellam, S. (1999) The promise of membrane technology. Environ. Sci. Technol., 33: 360A–366A.
  • McGinnis, R.L. and Elimelech, M. (2007) Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination, 207 (1–3): 370–382.
  • Cath, T.Y., Childress, A.E., and Elimelech M. (2006) Forward osmosis: Principles, applications, and recent developments. J. Membrane Sci., 281: 70–87.
  • Anderson, D.K. (1977) Concentration of Dilute Industrial Wastes by Direct Osmosis; PhD dissertation, University of Rhode Island: Kingston, RI.
  • Goosens, I. and Van-Haute, A. (1978) The use of direct osmosis tests as complementary experiments to determine the water and salt permeabilities of reinforced cellulose acetate membranes. Desalination, 26: 299–308.
  • Kravath, R.E. and Davis, J.A. (1975) Desalination of seawater by direct osmosis. Desalination, 16: 151–155.
  • Votta, F., Barnett, S.M., and Anderson, D.K. (1974) Concentration of Industrial Waste by Direct Osmosis: Completion Report; Providence, Rhode Island.
  • McCutcheon, J.R., McGinnis, R.L., and Elimelech, M. (2005) A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination, 174: 1–11.
  • Wang, K.Y., Chung, T.S., and Qin, J.J. (2007) Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. J. Membrane Sci., 300: 6–12.
  • Yang, Q., Wang, K.Y., and Chung T.S. (2009) Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water production. Environ. Sci. Technol., 43: 2800–2805.
  • Reid, C.E. and Breton, E.J. (1959) Water and ion flow across cellulosic membranes. J. Appl. Polym. Sci., 1: 133–143.
  • Reid, C.E. and Kuppers, J.R. (1959) Physical characteristics of osmotic membranes of organic polymers. J. Appl. Polym. Sci., 2: 264–272.
  • Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2011) Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membrane Sci., 367: 340–352.
  • Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D., and Elimelech, M. (2010) High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol., 44: 3812–3818.
  • Hong, S. and Elimelech, M. (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membrane Sci., 132: 159–181.
  • Chen, D., Weavers, L.K., Walker, H.W., and Lenhart, J.J. (2006) Ultrasonic control of ceramic membrane fouling by natural organic matter and silica particles. J. Membrane Sci., 276: 135–144.
  • Fan, L., Harris, J.L., Roddick, F.A., and Booker, N.A. (2001) Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res., 35: 4455–4463.
  • Zhao, S., Zou, L. Tang, C.Y., and Mulcahy, D. (2012) Recent developments in forward osmosis: opportunities and challenges. J. Membrane Sci., 396, 1–21.
  • Batchelder, G.W. (1965) Process for the demineralization of water. US Patent 3,171,799.
  • Frank, B.S. (1972) Desalination of sea water. US Patent 3,670,897.
  • Kessler, J.O. and Moody, C.D. (1976) Drinking water from sea water by forward osmosis. Desalination, 18: 297–306.
  • Moody, C.D. and Kessler, J.O. (1976) Forward osmosis extractors. Desalination, 18: 283–295.
  • Stache, K. (1989) Apparatus for transforming seawater, brackish water, polluted water or the like into a nutrious drink by means of osmosis. US Patent 4,879,030.
  • Yaeli, J. (1992) Method and apparatus for processing liquid solutions of suspensions particularly useful in the desalination of saline water. US Patent 5,098,575.
  • McGinnis, R.L. (2002) Osmotic desalination process. US Patent 6,391,205 B1.
  • McCutcheon, J.R., McGinnis, R.L., and Elimelech, M. (2006) Desalination by a novel ammonia–carbon dioxide forward osmosis process: influence of draw and feed solution concentrations on process performance. J. Membrane Sci., 278: 114–123.
  • HTI, HydroPack (2013). http://www.htiwater.com/divisions/personal_hydration/index.html. ( accessed May 3, 2013)
  • Achilli, A., Cath, T.Y., Marchand, E.A., and Childress, A.E. (2009) The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination, 239: 10–21.
  • Taylor, J.S. and Wiesner, M. (1999) Membranes. In: Water Quality and Treatment. American Water Works Association, 5th edition; Letterman, R.D., ed.; McGraw-Hill: New York, 11.1–11.71.
  • McCutcheon, J.R. and Elimelech, M. (2006) Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membrane Sci., 284: 237–247.
  • Mehta, G.D. and Loeb, S. (1978) Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis. J. Membrane Sci., 4: 261–265.
  • Mehta, G.D. and Loeb, S. (1978) Performance of permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures. J. Membrane Sci., 4: 335–349.
  • Loeb, S., Titelman, L., Korngold, E., and Freiman, J. (1997) Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. J. Membrane Sci., 129: 243–249.
  • Shirazi, S., Lin, C.J., and Chen, D. (2010) Inorganic fouling of pressure-driven membrane processes—A critical review. Desalination, 250(1): 236–248.
  • Holloway, R.W., Childress, A.E., Dennett, K.E., and Cath, T.Y. (2007) Forward osmosis for concentration of anaerobic digester centrate. Water Res., 41: 4005–4014.
  • Mi, B. and Elimelech, M. (2008) Chemical and physical aspects of organic fouling of forward osmosis membranes. J. Membrane Sci., 320: 292–302.
  • Mi, B. and Elimelech, M. (2010a) Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. J. Membrane Sci., 348: 337–345.
  • Mi, B. and Elimelech, M. (2010b) Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms. Environ. Sci. Technol., 44: 2022–2028.
  • Tang, C., She, Q., Lay, W.C.L., Wang, R., and Fane, A.G. (2010) Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J. Membrane Sci., 354: 123–133.
  • Wang, Y., Wicaksana, F., Tang, C.Y., and Fane, A.G. (2010) Direct microscopic observation of forward osmosis membrane fouling. Environ. Sci. Technol., 44: 7102–7109.
  • Parida, V. and Ng, H.Y. (2013) Forward osmosis organic fouling: Effects of organic loading, calcium and membrane orientation. Desalination, 312: 88–98.
  • Zou, S., Gu, Y., Xiao, D., and Tang, C.Y. (2011) The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J. Membrane Sci., 366: 356–362.
  • Boo, C., Lee, S., Elimelech, M., Meng, Z., and Hong, S. (2012) Colloidal fouling in forward osmosis: role of reverse salt diffusion. J. Membrane Sci., 390–391:277–284.
  • Li, Z.Y., Yangali-Quintanilla, V., Valladares-Linares, R., Li, Q., Zhan, T., and Amy, G. (2012) Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis. Water Res., 46: 195–204.
  • Gu, Y., Wang, Y.N., Wei, J., and Tang, C.Y. (2013) Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules. Water Res., 47: 1867–1874.
  • Xie, M., Nghiem, L.D., Price, W.E., and Elimelech, M. (2013) Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis. Water Res., 47: 4567–4575.
  • Zhu, X. and Elimelech, M. (1997) Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms. Environ. Sci. Technol., 31: 3654–3662.
  • Wiesner, M.R. and Aptel, P. (1996) Mass transport and permeate flux and fouling in pressure-driven processes. In: Water Treatment Membrane Processes; Mallevialle, J., Odendall, P.E., and Wiesner, M.R., ed.; McGraw-Hill: New York, 4.1–4.30.
  • Chen, D., Weavers, L.K., and Walker, H.W. (2006) Ultrasonic control of ceramic membrane fouling: effect of particle characteristics. Water Res., 40: 840–850.
  • Seidel, A. and Elimelech, M. (2002) Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control. J. Membrane Sci., 203: 245–255.
  • Chen, D. (2005) Ultrasonic control of membrane fouling caused by silica particles and dissolved organic matter, Ph.D. dissertation, The Ohio State University, Columbus, Ohio.
  • Lee, S. and Lee, C. (2000) Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Res., 34: 3854–3866.
  • Xie, R.J., Gomez, M.J., Xing, Y.J., and Klose, P.S. (2004) Fouling assessment in a municipal water reclamation reverse osmosis system as related to concentration factor. J. Environ. Eng. Sci., 3: 61–72.
  • Rebhun, M. and Lurie, M. (1993) Control of organic matter by coagulation and floc separation. Water Sci. Technol., 27: 1–20.
  • Randtke, S.J. (1988) Organic contaminant removal by coagulation and related process combinations. J. Am. Water Works Asso., 80: 40–56.
  • Liu, S., Lim, M., Fabris, R., Chow, C., Drikas, M., and Amal, R. (2008) TiO2 photocatalysis of natural organic matter in surface water: impact on trihalomethane and haloacetic acid formation potential. Environ. Sci. Technol., 42: 6218–6223.
  • Lahoussine-Turcaud, V., Wiesner, M.R., and Bottero, J.Y. (1990) Fouling in tangential-flow ultrafiltration: the effect of colloid size and coagulation pretreatment. J. Membrane Sci., 52: 173–190.
  • Amal, R., Raper, J.A., and Waite, T.D. (1992) Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles. J. Colloid. Interf. Sci., 151(1): 244–257.
  • Cornel, P.K., Summers, R.S., and Roberts, P.V. (1986) Diffusion of humic acid in dilute aqueous solution. J. Coll. Interf. Sci., 110(1): 149–164.
  • Tiller, C.L. and O’Melia, C.R. (1993) Natural organic matter and colloidal stability: models and measurements. Coll. Surf. A, 73: 89–102.
  • Ghosh, K. and Schnitzer, M. (1980) Macromolecular structures of humic substances. Soil Sci., 129: 266–276.
  • Hering, J.G. and Morel, F.M.M. (1993) Principles and Applications of Aquatic Chemistry; Wiley: New York.
  • Amirbahman, A. and Olson, T.M. (1995) Deposition kinetics of humic matter-coated hematite in porous media in the presence of Ca2+. Coll. Surf. A, 99: 1–10.
  • Mo, Y., Tiraferri, A., Yip, N.Y., Adout, A., Huang, X., and Elimelech, M. (2012) Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups. Environ. Sci. Technol., 46: 13253–13261.
  • Thurman, E.M. (1985) Organic Geochemistry of Natural Waters; Kluwer Academic: Dordrecht, Germany.
  • Jucker, C. and Clark, M.M. (1994) Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes. J. Membrane Sci., 97: 37–52.
  • Fan, L., Harris, J.L., Roddick, F.A., and Booker, N.A. (2001) Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res., 35(18): 4455–4463.
  • Chen, D., Weavers, L.K., and Walker, H.W. (2006) Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors. Ultrason. Sonochem., 13(5): 379–387.
  • Romero, C.A. and Davis, R.H. (1988) Global model of crossflow microfiltration based on hydrodynamic particle diffusion. J. Membrane Sci., 39: 157–185.
  • Lee, Y. and Clark, M.M. (1998) Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. J. Membrane Sci., 149: 181–202.
  • Field, R.W., Wu, D., Howell, J.A., and Gupta, B.B. (1995) Critical flux concept for microfiltration fouling. J. Membrane Sci., 100: 259–272.
  • Phillip, W.A., Yong, J.S., and Elimelech, M. (2010) Reverse draw solute permeation in forward osmosis: modeling and experiments. Environ. Sci. Technol. 44: 5170–5176.
  • Hancock, N.T. and Cath, T.Y. (2009) Solute coupled diffusion in osmotically driven membrane processes. Environ. Sci. Technol. 43: 6769–6775.
  • Lay, W.C.L., Chong, T.H., Tang, C., Fane, A.G., Zhang, J., and Liu, Y. (2010) Fouling propensity of forward osmosis: investigation of theslower flux decline phenomenon. Water Sci. Technol., 61: 927–936.
  • Lee, S., Boo, C., Elimelech, M., and Hong, S. (2010) Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membrane Sci., 365: 34–39.
  • Mehta, G.D. (1982) Further results on the performance of present-day osmotic membranes in various osmotic regions. J. Membrane Sci., 10: 3–19.
  • Zhao, S. and Zou, L. (2011) Relating solution physicochemical properties to internal concentration polarization in forward osmosis. J. Membrane Sci., 379: 459–467.
  • Trypue, M. and Kielkowska, U. (1998) Solubility in the NH4HCO3 + NaHCO3 + H2O system. J. Chem. Eng. Data, 43: 201–204.
  • Ling, M.M. and Chung, T.S. (2011) Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination, 278: 194–202.
  • Adham, S., Oppenheimer, J., Liu, L., and Kumar, M. (2007) Dewatering Reverse Osmosis Concentrate from Water Reuse Applications using Forward Osmosis. WateReuse Foundation research report.
  • Ling, M.M., Wang, K.Y., and Chung, T.S. (2010) Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res., 49: 5869–5876.
  • Ge, Q., Su, J., Chung, T.S., and Amy, G. (2011) Hydrophilic superparamagnetic nanoparticles: Synthesis, characterization, and performance in forward osmosis processes. Ind. Eng. Chem. Res., 50: 382–388.
  • Li, D., Zhang, X., Simon, G.P., and Wang, H. (2013) Forward osmosis desalination using polymer hydrogels as a draw agent: Influence of draw agent, feed solution and membrane on process performance. Water Res., 47: 209–215.
  • Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S.A (2003) Review on polymer nanofibres by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 63: 2223–2253.
  • Yang, Q., Wu, J., Li, J.J., Hu, M.X., and Xu, Z.K. (2006) Nanofibrous sugar sticks electrospun from glycopolymers for protein separation via molecular recognition. Macromol. Rapid Comm., 27: 1942–1948.
  • He, J.H., Liu, Y., Mo, L.F., Wan, Y.Q., and Xu, L. (2008) Electrospun Nanofibres and Their Applications; Smithers Rapra Technology: Shawbury, UK.
  • Gibson, P., Schreuder-Gibson, H., and Rivin, D. (2001) Transport properties of porous membranes based on electrospun nanofibers. Coll. Surf. A., 187–188:469–481.
  • Schreuder-Gibson, H., Gibson, P., Tsai, P., Gupta, P., and Wilkes, G. (2004) Cooperative charging effects of fibers from electrospinning of electrically dissimilar polymers. Inter. Nonwovens Journal, 13: 39–45.
  • Schreuder-Gibson, H., Gibson, P., Wadsworth, L., Hemphill, S., and Vontorcik, J. (2002) Effect of filter deformation on the filtration and air flow for elastomeric nonwoven media. Adv. Filtr. Sep. Technol., 15: 525–537.
  • Wannatong, L. and Sirivat, A. (2004) Electrospun fibers of polypyrrole/polystyrene blend for gas sensing applications. PMSE Preprints, 91: 692–693.
  • Wang, X.Y., Kim, Y.G., Drew, C., Ku, B.C., Kumar, J., and Samuelson, L.A. (2004) Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett., 4: 331–334.
  • Ding, B., Kim, J., Fujimoto, K., and Shiratori, S. (2004) Electrospun nanofibrous polyelectrolyte membranes for advanced chemical sensors. Chem. Sens., 20: 264–265.
  • Ding, B., Kim, J., Miyazaki, Y. and Shiratori, S. (2004) Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection, Sensor. Actuat. B-Chem., 101: 373–380.
  • Kim, C. and Yang, K.S. (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl. Phys. Lett., 83: 1216–1218.
  • Kim, C., Park, S.H., Lee, W.J., and Yang, K.S. (2004) Characteristics of supercapacitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochim. Acta, 50: 877–881.
  • Riboldi, S.A., Sampaolesi, M., Neuenschwander, P., Cossu, G., and Mantero, S. (2005) Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials, 26: 4606–4615.
  • Yang, F., Murugan, R., Wang, S., and Ramakrishna, S. (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26: 2603–2610.
  • Song, X., Liu, Z., and Sun, D.D. (2011) Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate. Adv. Mater., 23: 3256–3260.
  • Bui, N.N., Lind, M.L, Hoek, E.M.V., and McCutcheon, J.R. (2011) Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membrane Sci., 385–386:10–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.