348
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Micro-extraction of Xenobiotics and Biomolecules from Different Matrices on Nanostructures

, , , , , & show all
Pages 28-49 | Received 13 Jan 2014, Accepted 03 Sep 2014, Published online: 20 Oct 2015

REFERENCES

  • Majors, R.E. (1991) Trends in sample preparation. LC-GC Int., 4: 10–14.
  • Tan, G.H. and Abdulrauf, L.B. (2012) Pesticides-recent trends in pesticide residue assay: Recent developments and applications of micro-extraction techniques for the analysis of pesticide residues in fruits and vegetables. J. Sep. Sci., 35: 3540–3553.
  • De Koning, S., Janssen, H-G., and Th. Brinkman, U.A. (2009) Modern methods of sample preparation for GC analysis. Chromatographia, 69: S33–S78.
  • Ahmed, F.E. (2001) Analyses of pesticides and their metabolites in foods and drinks. TrAC Trends Anal. Chem., 20: 649–661.
  • Otero, R.R., Grande, B.C., and Gandara, J.S. (2003) Multiresidue method for fourteen fungicides in white grapes by liquid–liquid and solid-phase extraction followed by liquid chromatography–diode array detection. J. Chromatogr. A, 992: 121–131.
  • Albero, B., Sánchez-Brunete, C., and Tadeo, J.L. (2005) Multiresidue determination of pesticides in juice by solid-phase extraction and gas chromatography-mass spectrometry. Talanta, 66: 917–924.
  • Tan, G.H. and Chai, M.K. (2011) Sample preparation in the analysis of pesticides residue in food for chromatographic techniques. In: Pesticides— Strategies for Pesticides Analysis. Stoytcheva M, ed.; In Tech: Rijeka, Croatia; pp. 28–59.
  • Kataoka, H., Lord, H.L., and Pawliszyn, J. (2000) Applications of solid-phase micro-extraction in food analysis. J. Chromatogr. A, 880: 35–62.
  • Kataoka, H. (2010) Recent developments and applications of micro-extraction techniques in drug analysis. Anal. Bioanal. Chem., 396: 339–364.
  • Cruz-Vera, M., Lucena, R., Cardenas, S., and Valcarcel, M. (2011) Sample treatments based on dispersive (micro) extraction. Anal. Meth., 3: 1719–1728.
  • Ridgway, K., Lalljie, S.P.D., and Smith, R.M. (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J. Chromatogr. A, 1153: 36–53.
  • David, F. and Sandra, P. (2007) Stir bar sorptive extraction for trace analysis. J. Chromatogr. A, 1152: 54–69.
  • Pico, Y., Fernandez, M., Ruiz, M.J., and Font, G. (2007) Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment. J. Biochem. Biophys. Meth., 70: 117–131.
  • David, F., Hoeck, E., and Sandra, P. (2007) Towards automated, miniaturized and solvent free sample preparation methods. Anal. Bioanal. Chem., 387:141–144.
  • Quintana, J.B. and Rodriguez, I. (2006) Strategies for the micro-extraction of polar organic contaminants in water samples. Anal. Bioanal. Chem., 384: 1447–1461.
  • Domini, C.E., Hristozov, D., Almagro, B., Roman, I.P., Prats, S., and Canals, A. (2006) Chromatographic analysis of the environment. Chromatogr. Sci. Series, 93: 31–131.
  • Kawaguchi, M., Ito, R., Saito, K., and Nakazawa, H. (2006) Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J. Pharm. Biomed. Anal., 40: 500–508.
  • See, H.H., Sanagi, M. M., Ibrahim, W.A.W., and Naim, A.A. (2010) Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. J. Chromatogr. A, 1217: 1767–1772.
  • Hyotylainen, T. (2007) Principles, developments and applications of on-line coupling of extraction with chromatography. J. Chromatogr. A, 1153: 14–28.
  • Risticevic, S., Lord, H., Górecki, T., Arthur, C.L., and Pawliszyn, J. (2010) Protocol for solid-phase micro-extraction method development. Nature Protocols, 5: 122–139.
  • Louch, D., Motland, S., and Pawliszyn, J. (1992) Dynamics of organic compound extraction from water using liquid-coated fused silica fibers. J. Anal. Chem., 64: 1187–1199.
  • Arthur, C.L. and Pawliszyn, J. (1990) Solid phase micro-extraction with thermal desorption using fused silica optical fibers. Anal. Chem., 62: 2145–2148.
  • Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR (1992) Automation and optimization of solid-phase micro-extraction. Anal. Chem., 64: 1960–1966.
  • Eisert, R., and Pawliszyn, J. (1997) Automated in-Tube solid-phase micro-extraction coupled to high-performance liquid chromatography. Anal. Chem., 69: 3140–3147.
  • Aulakh, J.S., Malik, A.K., Kaur, V., and Schmitt-Kopplin, P. (2005) A review on solid phase micro extraction—high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Crit. Rev. Anal. Chem., 35: 71–85.
  • Abdulra’uf, L.B., Hammed, W.A., and Tan, G.H. (2012) SPME fibers for the analysis of pesticide residues in fruits and vegetables: A Review. Crit. Rev. Anal. Chem., 42: 152–161.
  • Shirey, R. (1999) Reporter Reprint T297051, Supelco: Bellefonte, PA.
  • Anonymous, (1998) Bulletin 925, SPME Application Guide, Supelco: Bellefonte, PA.
  • Goncalves, C. and Alpendurada, M.F. (2002) Comparison of three different poly(dimethyl siloxane)–divinylbenzene fibers for the analysis of pesticide multiresidues in water samples: structure and efficiency. J. Chromatogr. A, 963: 19–26.
  • Anonymous (1998) Bulletin 923, Supelco: Bellefonte, PA.
  • Anonymous (1998) Application Note 147, Supelco: Bellefonte, PA.
  • Hyötyläinen, T. and Riekkola, M.L. (2008) Sorbent- and liquid-phase micro-extraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: A Review. Anal. Chim. Acta, 614: 27–37.
  • Prieto, A., Basauri, O., Rodil, R., Usobiaga, A., Fernández, L.A., and Etxebarria, N. (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J. Chromatogr. A, 1217: 2642–2666.
  • Biparva1, P., and Matin, A.A. Micro-extraction techniques as a sample preparation step for metal analysis. www.intechopen.com ( accessed March 2014).
  • Tretyakov, Y.D. and Goodilin, E.A. (2009) Key trends in basic and application-oriented research on nanomaterials. Russ. Chem. Rev., 78: 801–820.
  • He, L., and Toh, C.S. (2006) Recent advances in analytical chemistry-A material approach. Anal. Chim. Acta, 556:1–15.
  • Cheng, M.D. (2005) Effect of nanophase materials (<20 nm) on biological responses. J. Environ. Sci. Health, 39: 2691–2705.
  • Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., and Bizios, R. (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res., 51: 475–483.
  • Cheng, F.Y., Wang, S.P.H., Su, C.H., Tsai, T.L., Wu, P.C., Shieh, D.B., Chen, J.H., Hsieh, P.C.H., and Yeh, C.S. (2008) Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials, 29: 2104–2112.
  • Chung, Y.C., Chen, I.H., and Chen, C.J. (2008) The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 29: 1807–1816.
  • Deng, C., Chen, J., Chen, X., Xiao, C., Nie, L., and Yao, S. (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens. Bioelectron., 23: 1272–1277.
  • Liu, H., and Webster, T.J. (2007) Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials, 28: 354–369.
  • Willner, I., and Willner, B. (2010) Bimolecul-based nanomaterials and nanostructures. Nano Lett., 10: 3805–3815.
  • Murray, R.W. (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev., 108: 2688–2720.
  • Valcarcel, M., Cardenas, S., Simonet, B.M., Moliner-Martinez, Y., and Lucena, R. (2008) Carbon nanostructures as sorbent materials in analytical processes. TrAC Trends Anal. Chem., 27:34–43.
  • Mehdinia, A., and Aziz-Zanjani, M.O. (2013) Recent advances in nanomaterials utilized in fiber coatings for solid-phase micro-extraction. TrAC Trends Anal., Chem., 42: 205–215.
  • Lucena, R., Simonet, B.M., Cárdenas, S., and Valcárcel, M. (2011) Potential of nanoparticles in sample preparation. J. Chromatogr. A, 1218: 620–637.
  • Simón de Dios, A. and Díaz-García M.E. (2010) Multifunctional nanoparticles: Analytical prospects. Anal. Chim. Acta, 666: 1–22.
  • Lasarte-Aragones, G., Lucena, R., Cardenas, S., and Valcarcell, M. (2011) Nanoparticle-based micro-extraction techniques in bioanalysis. Bioanalysis, 3: 2533–2548.
  • Mehdinia, A. and Mousavi, M. F. (2008) Enhancing extraction rate in solid-phase micro-extraction by using nano-structured polyaniline coating. J. Sep. Sci., 31:3565–3572.
  • Gogotsi, Y. (2006) Nanomaterials Handbook; Ed., CRC Taylor and Francis: Boca Ratón, FL. ISBN: 978-0-849-32308-9.
  • Ozin, G. A., and Arsenault, A.C. (2005) Nanochemistry: A chemical approach to nanomaterials; RSC Publishing: Cambridge, United Kingdom.
  • Rotello, V. (2004) Nanoparticles: Building Blocks for Nanotechnology (Series: Nanostructure Science and Technology); Springer: Weinheim, Germany,
  • Trojanowicz, M. (2006) Analytical applications of carbon nanotubes. TrAC Trends Anal. Chem., 25: 480–489.
  • Valcarcel, M., Cardenas, S., and Simonet, B.M. (2007) Role of carbon nanotubes in analytical science. Anal. Chem., 79: 4788–4797.
  • Moliner-Martínez, Y., Cardenas, S., Simonet, B.M., and Valcarcel, M. (2009) Recent developments in capillary EKC based on carbon nanoparticles. Electrophoresis, 30: 169–175.
  • Ravelo-Perez, L.M., Herrera-Herrera, A.V., Hernandez-Borges, J., and Rodríguez-Delgado, M. A. J. (2010) Carbon nanotubes: Solid-phase extraction. J. Chromatogr. A, 1217: 2618–2641.
  • Scida, K., Stege, P.W., Haby, G., Messina, G.A., and García, C.D. (2011) Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Anal. Chim. Acta, 691: 6–17.
  • Duan, A.H., Xie, S.M., and Yuan, L.M. (2011) Nanoparticles as stationary and pseudo-station+ary phases in chromatographic and electrochromatographic separations. TrAC Trends Anal. Chem., 30: 484–491.
  • Kroto, H.W., Health, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E. (1985) C60: Buckminster fullerene. Nature, 318: 162–164.
  • Xiao, C., Han, S., Wang, Z., Xing, J., and Wu, C. (2001) Application of the polysilicone fullerene coating for solid-phase micro-extraction in the determination of semi-volatile compounds. J. Chromatogr. A, 927: 121–130.
  • Ijima, S. (1991) Helical microtubules of graphitic carbons. Nature, 354: 56–58.
  • Harris, P.J.F. (1999) Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century; Syndicate of the University of Cambridge Press: Cambridge, United Kingdom, p. 294.
  • Jimenez-Soto, J.M., Lucena, R., Cardenas, S., and Valcarcel, M. (2010) Solid phase (micro) extraction tools based on carbon nanotubes and related nanostructures. In: Carbon Nanotubes. Marulanda JR (Ed). In-tech, pp. 409–428.
  • Carrillo-carrion, C., Lucena, R., Cardenas, S., and Valcarcel, M. (2007) Surfactant coated carbon nanotubes as pseudo phases in liquid-liquid extraction. Analyst, 132:551–559.
  • Wang, J., Jiang, D., Gu, Z., and Yan, X. (2006) Multiwalled carbon nanotubes coated fibers for solid-phase micro-extraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J. Chromatogr. A, 1137: 8–14.
  • Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.C., and Kim, K.S., (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 4: 3979–3986.
  • Zhao, G.X., Jiang, L., He, Y.D., Li, J.X., Dong, H.L., Wang, X.K., and Hu, W.P. (2011) Sulfonated graphene for persistent aromatic pollutant management. Adv. Mater., 23: 3959–3963.
  • Li, B., Cao, H., and Yin, G. (2011) Mg(OH)2 @ reduced graphene oxide composite for removal of dyes from water. J. Mater. Chem., 21: 13765–13768.
  • Park, S., and Ruoff, R.S. (2009) Chemical methods for the production of graphenes. Nat. Nanotechnol., 4: 217–224.
  • Loh, K.P., Bao, Q.L., Eda, G., and Chhowalla, M. (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem., 2: 1015–1024.
  • Liu, Q., Shi, J., and Jiang, G. (2012) Application of graphene in analytical sample preparation. TrAC Trend. Anal. Chem., 37: 1–11.
  • Kong, X.L., Huang, L.C.L., Hsu, C.M., Chen, W.H., Han, C.C., and Chang, H.C. (2005) High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal. Chem., 77: 259–265.
  • Bavastrello, V., Stura, E., Carrara, S., Erokhin, V., and Nicolini, C. (2004) Poly (2,5-dimethylaniline)-MWNTs nanocomposite: A new material for conductometric acid vapors sensor. Sensor & Actuators B, 98: 247–253.
  • Kozlowski, M., Diduszko, R., Olszewska, K., Wronka, H., and Czerwosz, E. (2008) Nanostructural palladium films for sensor applications. Vacuum, 82: 956–961.
  • Gong, K., Zhang, M., Yan, Y., Su, L., Mao, L., Xiong, S., and Chen, Y. (2004) Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Anal. Chem., 76: 6500–6505.
  • Wang, J., and Musameh, M. (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem., 75: 2075–2079.
  • Zou, J., Song, X.H., Ji, J.J., Xu, W.C., Chen, J.M., Jiang, Y.Q., Wang, Y.R., and Chen, X. (2011) Polypyrrole/graphene composite-coated fiber for the solid-phase micro-extraction of phenols. J. Sep. Sci., 34: 2765–2772.
  • Jin, Y., Li, A., Hazelton, S.G., Liang, S., John, C.L., Selid, P.D., Pierce, D.T., and Zhao, J.X. (2009) Amorphous silica nanohybrids: synthesis, properties & application. Coord. Chem. Rev., 253: 2998–3014.
  • Wang, L., Zhao, W., and Tan, W. (2008) Bioconjugated silica nanoparticles. Nano Res., 1:99–115.
  • Stöber, W., Fink, A., and Bohn, E. (1968) Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interf. Sci., 26:62–69.
  • Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S. (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359:710–712.
  • Schmidt-Winkel, P., Lukens, W.W., Zhao, D.Y., Yang, P.D., Chmelka, B.F., and Stucky, G.D. (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc., 121:254–255.
  • Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R.S., Stucky, G.D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., and Chmelka, B.F. (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 261:1299–1303.
  • Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F. and Stucky, G.D. (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279:548–552.
  • Tanev, P.T., and Pinnavaia, T.J. (1995) A neutral templating route to mesoporous molecular sieves. Science, 267:865–867.
  • Fan, J., Yu, C., Gao, F., Lei, J., Tian, B., Wang, L., Luo, Q., Tu, B., Zhou, W., and Zhao, D. (2003) Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed., 42:3146–3150.
  • Hoffmann, F., Cornelius, M., Morell, J., and Froba, M. (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed., 45:3216–3251.
  • Zuo, C., Yu, W.J., Zhou, X.F., Zhao, D.Y., and Yang, P.Y. (2006) Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. Rapid Commun. Mass Spectrom., 20:3139–3144.
  • Freeman, R.G., Grabar, K.C., Alison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Homer, M.B., Jackson, M.A., Smith, P.C., Walter, D.G., and Natan, M.J. (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science, 267:1629–1632.
  • Grabar, K.C., Freeman, R. G., Hommer, M.B., and Natan, M.J. (1995) Preparation and characterization of Au colloid monolayers. Anal. Chem., 67:735–743.
  • Sudhir, P.R., Wu, H.F., and Zhou, Z.C. (2005) Identification of peptides using gold nanoparticle-assisted single-drop micro-extraction coupled with AP-MALDI Mass Spectrometry. Anal. Chem., 77: 7380–7385.
  • Shrivas, K., and Wu, H.F. (2008) Modified silver nanoparticle as a hydrophobic affinity probe for analysis of peptides and proteins in biological samples by using liquid-liquid micro-extraction coupled to AP-MALDI-ion trap and MALDI-TOF mass spectrometry. Anal. Chem., 80: 2583–2589.
  • Sudhir, P.R., Shrivas, K., Zhou, Z.C., and Wu, H.F. (2008) Single drop micro-extraction using silver nanoparticles as electrostatic probes for peptide analysis in AP-MALDI/MS and comparison with gold electrostatic probes and silver hydrophobic probes. Rapid Comm. Mass Spectrom., 22:3076–3086.
  • Wang, D., Zhang, Z., Luo, L., Li, T., Zhang, L., and Chen, G. (2009) ZnO nanorod array solid phase micro-extraction fiber coating: fabrication and extraction capability. Nanotechnology, 20: 465–702.
  • Alizadeh, R., Najafi, N.M., and Kharrazi, S. (2011) A new solid phase micro extraction for simultaneous head space extraction of ultra-traces of polar and non-polar compounds. Anal. Chim. Acta, 689: 117–121.
  • Ji, J., Liu, H., Chen, J., Zeng, J., Huang, J., Gao, L., Wang, Y. and Chena, X. (2012) ZnO nanorod coating for solid phase micro-extraction and its applications for the analysis of aldehydes in instant noodle samples. J. Chromatogr. A, 1246: 22–27.
  • Cao, D.D., Lü, J.X., Liu, J.F., and Jiang, G.B. (2008) In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase micro-extraction fiber. Anal. Chim. Acta, 611: 56–61.
  • Liua, H., Wang, D., Ji, L., Li, J., Liu, S., Liu, X., and Jiang, S. (2010) A novel TiO2 nanotube array/Ti wire incorporated solid-phase micro-extraction fiber with high strength, efficiency and selectivity. J. Chromatogr. A, 1217: 1898–1903.
  • Zhang, Z., Wang, Q., and Li, G. (2012) Fabrication of novel nanoporous array anodic alumina solid-phase micro-extraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds. Anal. Chim. Acta, 727: 13–19.
  • Mehdinia, A., Mousavi, M.F., and Shamsipur, M. (2006) Nano-structured lead dioxide as a novel stationary phase for solid-phase micro-extraction. J. Chromatogr., A, 1134: 24–31.
  • Feng, J., Sun, M., Liu, H., Li, J., Liu, X., and Jiang, S. (2010) Au nanoparticles as a novel coating for solid-phase micro-extraction. J. Chromatogr., A, 1217:8079–8086.
  • Liang, P., Qin, Y., Hu, B., Peng, T., and Jiang, Z. (2001) Nanometer-size titanium dioxide microcolumn on-line preconcentration of trace metals and their determination by inductively coupled plasma atomic emission spectrometry in water. Anal. Chim. Acta, 440: 207–213.
  • Gokturk, G., Delzendeh, M., and Volkan, M. (2000) Preconcentration of germanium on mercapto-modified silica gel. Spectrochim. Acta B, 55: 1063–1071.
  • Liang, P., Hu, B., Jiang, Z., Qin, Y., and Peng, T. (2001) Nanometer-sized titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their determination by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom., 16:863–866.
  • Chen, S.J., and Chang. H.T. (2004) Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal. Chem., 76: 3727–3734.
  • Teja, A.S., and Koh, P.Y. (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55:22–45.
  • Theis, A.L., Waldack, A.J., Hansen, S.M., and Jeannot, M.A. (2001) Headspace solvent micro-extraction. Anal. Chem., 73: 5651–5654.
  • Costas-Mora, I., Romero, V., Pena-Pereira, F., Lavilla, I., and Bendicho, C. (2011) Quantum Dot-Based Headspace Single-Drop Micro-extraction Technique for Optical Sensing of Volatile Species. Anal. Chem, 83:2388–2393.
  • Chen, B., Peng, H., Zheng, F., Hu, B., He, M., Zhao, W., and Pang, D. (2010) Immunoaffinity monolithic capillary micro-extraction coupled with ICP-MS for immunoassay with quantum dot labels. J. Anal. At. Spectrom., 25:1674–1681.
  • Carrillo-Carrion, C., Simonet, B.M., and Valcarcel, M. (2012) (CdSe/ZnS QDs)-ionic liquid-based headspace single drop micro-extraction for the fluorimetric determination of trimethylamine in fish. Analyst, 137:1152–1159.
  • Billingham, N.C., and Calvert, P.D. (1989) Electrically conducting polymers - a polymer science viewpoint. Adv. Polym. Sci., 90:1–104.
  • Trojanowicz, M. (2003) Application of conducting polymers in chemical analysis. Microchim. Acta, 143:75–91.
  • Wu, J.C., Mullett, W.M., and Pawliszy, J. (2002) Electrochemically controlled solid-phase micro-extraction based on conductive polypyrrole films. Anal. Chem., 74: 4855–4859.
  • Wang, Y., Li, Y., Zhang, J., Xu, S., Yang, S., and Sun, C. (2009) A novel fluorinated polyaniline-based solid-phase micro-extraction coupled with gas chromatography for quantitative determination of polychlorinated biphenyls in water samples. Anal. Chim. Acta 646: 78–84.
  • Wang, Y., Li, Y., Feng, J., and Sun, C. (2008) Polyaniline-based fiber for headspace solid-phase micro-extraction of substituted benzenes determination in aqueous samples. Anal. Chim Acta, 619: 202–208.
  • Mousavi, M., Noroozian, E., Jalali-Heravi, M., and Mollahosseini, A. (2007) Optimization of solid-phase micro-extraction of volatile phenols in water by a polyaniline-coated Pt-fiber using experimental design. Anal. Chim. Acta, 581: 71–77.
  • Sanchez-Pradoa, L., Risticevic, S., Pawliszyn, J., and Psillakis, E. (2009) Low temperature SPME device: a convenient and effective tool for investigating photodegradation of volatile analytes. J. Photochem. & Photobiol., 206: 227–230.
  • Li, X., Zhong, M., and Chen, J., (2008) Electrodeposited polyaniline as a fiber coating for solid-phase micro-extraction of organochlorine pesticides from water. J. Sep. Sci., 31: 2839–2845.
  • Wanga, Y., Zhanga, J., Shengb, D., and Suna, C. (2010) Preparation and applications of perfluorinated ion doped polyaniline based solid-phase micro-extraction fiber. J. Chromatogr. A, 1217: 4523–4528.
  • Wu, J., Yu, X., Lord, H., and Pawliszyn, J. (2000) Solid phase micro-extraction of inorganic ion based on polypyrrole film. Analyst, 125: 391–394.
  • Wu, J., Deng, Z., and Pawliszyn, J. (1999) Polypyrrole, Poly-N-phenylpyrrole Films for SPME communication 86 at Extech. ’99, Waterloo, Canada.
  • Wu, J., Lord, H., Pawliszyn, J., and Kataoka, H. (2000) Polypyrrole coated capillary in-tube SPME coupled with HPLC electrospray ionization MS for the determination of beta blockers in urine and serum samples. J. Microcolumn. Sep., 12: 255–266.
  • Asadollahzadeh, H., Noroozian, E., and Maghsoudi, Sh. (2010) Solid-phase micro-extraction of phthalate esters from aqueous media by electrochemically deposited carbon nanotube/polypyrrole composite on a stainless steel fiber. J. Anal. Chim. Acta, 669: 32–38.
  • Lord, H., and Pawliszyn, J. (2000) Evolution of solid-phase micro-extraction technology. J. Chromatogr. A, 885: 153–193.
  • Li, Y. (2002) Electrochemical preparation of conducting polymers. Curr. Trends Polym. Sci., 7: 100–111.
  • Hur, E., Bereket, G., and Sahin, Y. J. (2006) Corrosion performance of self-doped sulfonated polypyrrole coatings on stainless steel. Mater. Chem.& Phys., 100: 19–25.
  • Yates, B.J., Temsamani, K.R., Ceylan, O., Oztemiz, S., Gbatu, T.P., Rue, R.A.L., Tamer, U., and Mark, H.B. (2002) Electrochemical control of solid phase micro-extraction: conducting polymer coated film material applicable for preconcentration/analysis of neutral species. Talanta, 58: 739–745.
  • Chong, S.L., Wang, D., Hayes, J.D., Wilhite, B.W., and Malik, A. (1997) Sol-gel coating technology for the preparation of solid-phase micro-extraction fibers of enhanced thermal stability. Anal. Chem., 69: 3889–3898.
  • Mehdinia, A., Roohib, F., Jabbarib, A., and Manafic, M.R. (2011), Self-doped polyaniline as new polyaniline substitute for solid-phase micro-extraction. Anal. Chim. Acta, 683: 206–211.
  • Mehdinia, A., Asiabib, M., Jabbarib, A., Kalaeec, M.R. (2010) Preparation and evaluation of solid-phase micro-extraction fiber based on nano-structured copolymer of aniline and m-amino benzoic acid coating for the analysis of fatty acids in zooplanktons. J. Chromatogr. A, 1217: 7642–7647.
  • Tamayo, F.G., Turiel, E., and Mart´ın-Esteban A. (2007) Molecularly imprinted polymers for solid-phase extraction and solid-phase micro-extraction: Recent developments and future trends. J. Chromatogr. A, 1152: 32–40.
  • Hu, X., Dai, G., Huang, J., Ye, T., Fan, H., Youwen, T., Yu, Y., Liang Y. (2010), Molecularly imprinted polymer coated on stainless steel fiber for solid-phase micro-extraction of chloroacetanilide herbicides in soybean and corn. J. Chromatogr. A, 1217: 5875–5882.
  • Huczko, A. (2002) Synthesis of aligned carbon nanotubes. Appl. Phys. A, 74:617–638.
  • Kingston, C.T., and Simard, B. (2003) Fabrication of carbon nanotubes. Anal. Lett., 36: 3119–3145.
  • Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C., Lee, Y., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E., and Smalley, R.E. (1996) Crystalline ropes of metallic carbon nanotubes. Science, 273: 483–487.
  • Hou, P.X., Liu, C., and Cheng, H.M. (2008) Purification of carbon nanotubes. Carbon, 46: 2003–2025.
  • Baer, D.R., Gaspar, D.J., Nachimuthu, P., Techane, S.D., and Castner, D.G., (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal. Bioanal. Chem., 396: 983–1002.
  • Wepasnick, K.A., Smith, B.A., Bitter, J.L., and Fairbrother, D.H. (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem., 396: 1003–1014.
  • Zhang, B., and Yan, B. (2010) Analytical strategies for characterizing the surface chemistry of nanoparticles. Anal. Bioanal. Chem., 396: 973–982.
  • Colomer, J.F., Piedigrosso, P., Willems, J., Bernier, P., Van Tendeloo, G., Fonseca, A., and Nagy, J.B. (1998) Purification of catalytically produced multi-wall nanotubes. J. Chem. Soc., Faraday Trans., 94: 3753–3758.
  • Park, T.J., Banerjee, S., Hemraj-Beni, T., and Wong, S.S. (2006) Purification strategies and purity visualization technique for single walled carbon nanotubes. J. Mater. Chem., 16: 141–154.
  • Dillon, A.C., Gennet, T., Jones, K.M., Alleman, J.L., Parilla, P.A., and Heben, M.J. (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater., 11: 1354–1358.
  • Chen, C.M., Chen, M., Leu, F.C., Hsu, S.Y., Wang, S.C., Shi, S.C. and Chen C.F. (2004) Purification of multi-walled carbon nanotubes by microwave digestion method. Diam. Relat. Mater., 13: 1182–1186.
  • Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A. (2005) Raman spectroscopy of carbon nanotubes. Phys. Rep., 409: 47–99.
  • Tohji, K., Takahashi, H., Shinoda, Y., Shimizu, N., Jeyadevan, B., Matsuoka, I., Saito, Y., Kasuya, A., Ito, S., Nishina, Y. (1997) Purification procedure for single-walled nanotubes. J. Phys. Chem. B, 101: 1974–1978.
  • Boehm, H.P. (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32: 759–769.
  • Sun, Y.P., Fu, K., Lin, Y., and Huang, W. (2002) Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res., 35: 1096–1104.
  • Grazhulene, S.S., Red’kin, A.N., Telegin, G.F., Bazhenov, A.V., and Fursova, T.N. (2010) Adsorption properties of carbon nanotubes depending on the temperature of their synthesis and subsequent treatment. J. Anal. Chem., 65: 682–689.
  • Musameh, M.M., Hickey, M., and Kyratzis, I.L. (2011) Critical evaluation of electrode design and matrix effects on monitoring organophosphate pesticides using composite carbon nanotube-modified electrodes. Res. Chem. Intermed., 37: 705–717.
  • Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K. (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review Composites: Part A, 41: 1345–1367.
  • Herrero Latorre, C., Álvarez Méndez, J., Barciela García, J., García Martín, S., and Pe˜na Crecente R.M. (2012) Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review: Anal. Chim. Acta, 749: 16–35.
  • Zhang, W., Sun, Y., Wu, C., Xing, J., and Li, J. (2009) Polymer-functionalized single-walled carbon nanotubes as a novel sol-gel solid-phase micro-extraction coated fiber for determination of poly-brominated diphenyl ethers in water samples with gas chromatography-electron capture detection. Anal. Chem., 81: 2912–2020.
  • Sun, Y., Zhang, W.Y., Xing, J., and Wang, C.M. (2011) Solid-phase microfibers based on modified SWCNTs for extraction of chlorophenols and organochlorine pesticides. Microchim. Acta, 173: 223–229.
  • Zhang, W.Y., Sun, Y., Wang, C.M., and Wu, C.Y. (2011) Solid-phase microfibers based on polyethylene glycol modified single-walled carbon nanotubes for the determination of chlorinated organic carriers in textiles. Anal. Bioanal. Chem., 401: 1685–1693.
  • Rastkari, N., Ahmadkhaniha, R., and Yunesian, M. (2009) Single-walled carbon nanotubes as an effective adsorbent in solid-phase micro-extraction of low level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether from human urine. J. Chromatogr. B, 877: 1568–1574.
  • Rastkari, N., Ahmadkhaniha, R., Samadi, N., Shafiee, A., and Yunesian, M. (2010) Single-walled carbon nanotubes as solid-phase micro-extraction adsorbent for the determination of low-level concentrations of butyltin compounds in seawater. Anal. Chim. Acta, 662: 90–96.
  • Rastkari, N., Ahmadkhaniha, R., Yunesian, M., Baleh, L.J., and Mesdaghinia, A. (2010) Sensitive determination of bisphenol A and bisphenol F in canned food using a solid-phase micro-extraction fiber coated with single-walled carbon nanotubes before GC/MS. Food Addit. Contam., 27: 1460–1468.
  • Lü, J., Liu, J., Wei, Y., Jiang, K., Fan, S., Liu, J., and Jiang, G. (2007) Preparation of single-walled carbon nanotube fiber coating to solid-phase micro-extraction of organochlorine pesticides in lake water and wastewater. J. Sep. Sci., 30: 2136–2143.
  • Wu, F., Lu, W., Chen, J., Liu, W., and Zhang, L. (2010) Single-walled carbon nanotubes coated fibers for solid-phase micro-extraction and gas chromatography–mass spectrometric determination of pesticides in tea samples. Talanta, 82: 1038–1043.
  • Li, Q., Wang, X., and Yuan, D. (2009) Preparation of solid-phase micro-extraction coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples. J. Chromatogr., A, 1216: 1305–1311.
  • Li, Q., Ma, X., Yuan, D., and Chen, J. (2010) Evaluation of the solid-phase micro-extraction fiber coated with single walled carbon nanotubes for the determination of benzene, toluene, ethylbenzene, xylenes in aqueous samples. J. Chromatogr., A, 1217: 2191–2196.
  • Li, Q., Ding, Y., and Yuan, D. (2011) Electrosorption-enhanced solid-phase micro-extraction of trace anions using a platinum plate coated with single-walled carbon nanotubes. Talanta, 85: 1148–1153.
  • Ma, X., Li, Q., and Yuan, D. (2011) Determination of endocrine-disrupting compounds in water by carbon nanotubes solid-phase micro-extraction fiber coupled online with high performance liquid chromatography. Talanta, 85: 2212–2217.
  • Chen, L., Chen, W., Ma, C., Du, D., and Chen, X. (2011) Electropolymerized multiwalled carbon nanotubes/polypyrrole fiber for solid-phase micro-extraction and its applications in the determination of pyrethroids. Talanta, 84: 104–108.
  • Du, W., Zhao, F., and Zeng, B. (2009) Novel multiwalled carbon nanotubes–polyaniline composite film coated platinum wire for headspace solid-phase micro-extraction and gas chromatographic determination of phenolic compounds. J. Chromatogr., A, 1216: 3751–3757.
  • Hou, J.G., Ma, Q., Du, X.Z., Deng, H.L., and Gao, J.Z. (2004) Inorganic/organic mesoporous silica as a novel fiber coating of solid-phase micro-extraction. Talanta, 62: 241–246.
  • Du, X.Z., Wang, Y.R., Tao, X.J., and Deng, H.L. (2005) An approach to application of mesoporous hybrid as a fiber coating of solid-phase micro-extraction. Anal. Chim. Acta, 543: 9–16.
  • Zhao, L., Qin, H., Wu, R., and Zou, H. (2012) Recent advances of mesoporous materials in sample preparation. J. Chromatogr. A, 1228: 193–204.
  • Huo, Q.S., Margolese, D.I. and Stucky, G.D. (1996) Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater., 8: 1147–1160.
  • Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., and Stucky, G.D. (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 120: 6024–6036.
  • Kimura, T., Kamata, T., Fuziwara, M., Takano, Y., Kaneda, M., Sakamoto, Y., Terasaki, O., Sugahara, Y., and Kuroda, K. (2000) Formation of novel ordered mesoporous silicas with square channels and their direct observation by transmission electron microscopy. Angew. Chem. Int. Ed., 39: 3855–3859.
  • Yang, Z., Lu, Y., and Yang, Z. (2009) Mesoporous materials: tunable structure, morphology and composition. Chem. Commun., 2270–2277.
  • Tiemann, M. (2007) Porous metal oxides as gas sensors. Chem. Eur. J., 13: 8376–8388.
  • Jun, S., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., and Terasaki, O. (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc., 122: 10712–10713.
  • Wang, P.Y., Zhao, L., Wu, R., Zhong, H., Zou, H.F., Yang, J., and Yang, Q.H. (2009) Phosphonic acid functionalized periodic mesoporous organosilicas and their potential applications in selective enrichment of phosphopeptides. J. Phys. Chem. C, 113: 1359–1366.
  • Zhu, F., Liang, Y., Xia, L., Rong, M., Su, C., Lai, R., Li, R., and Ouyang G. (2012) Preparation and characterization of vinyl-functionalized mesoporous organosilica-coated solid-phase micro-extraction fiber. J. Chromatogr. A, 1247: 42–48.
  • Li, X., Zhu, G., Luo, Y., Yuan, B., Feng Y. (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trend. Anal. Chem., 45: 233–247.
  • Pena-Pereira, F., Duarte, R.M.B.O., and Duarte A.C. (2012) Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces. Trend. Anal. Chem., 40: 90–105.
  • Martín-Esteban A. (2013) Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC Trend. Anal. Chem., 45: 169–181.
  • Wulff, G., and Sarhan, S. (1972) Use of polymers with enzyme-analogous structures forthe resolution of racemates. Angew. Chem., Int. Ed. Engl., 11: 341.
  • Sellergren, B., and Andersson, L.I. (1990) Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy. J. Org. Chem., 55: 3381–3383.
  • Whitcombe, M.J., Rodriguez, M.E., Villar, P., and Vulfson, E.N. (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc., 117: 7105–7111.
  • Arshady, R., and Mosbach, K. (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Makromol. Chem., 182: 687–692.
  • Mullet, W. M., Martin, P., and Pawliszyn, (2001) In-Tube Molecularly Imprinted Polymer Solid-Phase Micro-extraction for the Selective Determination of Propranolol. J. Anal. Chem., 73: 2383–2389.
  • Koester, E. H. M., Crescenzi, C., Den Hoedt, W., Ensing, K., and de Jong, G. (2001) Fibers coated with molecularly imprinted polymers for solid-phase micro-extraction. J. Anal. Chem. 73: 3140–3145.
  • Sanagi, M.M., Salleh, S., Ibrahim W.A.W., and Naim A.A. (2010) Molecularly imprinted polymers for solid phase extraction of orghanophosphorus pesticides. J. Fund. Sci., 6: 27–30.
  • Turiel, E., and Martn-Esteban, A. (2009) Molecularly imprinted polymers for solid-phase micro-extraction. J. Sep. Sci., 32: 3278–3284.
  • Turiel, E., and Martín-Esteban, A. (2010) Molecularly imprinted polymers for sample preparation: A review, Anal. Chim. Acta, 668: 87–99.
  • Anlac, N., and John, H.T.L. (1997) Separation and determination of polycyclic aromatic hydrocarbons by solid phase micro-extraction /cyclodextrin-modified capillary electrophoresis. Anal. Chem., 69: 1726–1731.
  • Chenwen, W., and Pawliszyn, J. (1998) Solid phase micro-extraction coupled to capillary electrophoresis. Anal. Commun., 35: 353–356.
  • Jinno, K., Kawazoe, M., Saito, Y., Takeichi, T., and Hayashida, M. (2001) sample preparation with fiber-in-tube solid-phase micro-extraction for capillary electrophoretic separation of tricyclic antidepressant drugs in human urine. Electrophoresis, 22: 3785–3790.
  • Tang, P., Cai J., and Su, Q. (2009) Carbon Nanotubes Coated Fiber for Solid-phase Micro-extraction of Bovine Fibrinogen and Bovine Serum Albumin, J. Chinese Chem. Soci., 56: 1128–1138.
  • Sarafraz-Yazdi, A., Amiri, A., Rounaghi G., Hosseini, H.E. (2011) A novel solid-phase micro-extraction using coated fiber based sol–gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flam ionization detector. J. Chromatogr. A, 1218: 5757–5764.
  • Basheer, C., Alnedhary, A.A. Rao, B.S.M., Valliyaveettil S., and Lee, H.K. (2006) Development and Application of Porous Membrane-Protected Carbon Nanotube Micro-Solid-Phase Extraction Combined with Gas Chromatography/Mass Spectrometry. Anal. Chem., 78: 2853–2858.
  • Jiménez-Soto, J.M., Cárdenas, S., Valcárcel, M. (2012) Dispersive micro solid-phase extraction of triazines from waters using oxidized single-walled carbon nanohorns as sorbent. J. Chromatogr. A, 1245: 7–23.
  • Xu, L., and Lee, H.K. (2008) Novel approach to microwave-assisted extraction and micro-solid-phase extraction from soil using graphite fibers as sorbent, J. Chromatogr. A, 1192: 203–207.
  • Rao, H., Du, X., Wang, X., Li, C., and Cao, X. (2010), Rapid synthesis of phenyl-functionalized mesoporous silica using as a highly efficient fiber coating of solid-phase micro-extraction. Mate. & Manufact. Proces., 25: 948–952.
  • Wang, X., Liu, J., Liu, A., Liu, Q., Du, X., and Jiang, G. (2012) Preparation and evaluation of mesoporous cellular foams coating of solid-phase micro-extraction fibers by determination of tetrabromobisphenol A, tetrabromobisphenol S and related compounds. Anal. Chim. Acta, 753: 1–7.
  • Gao, Z., Li, W., Liu, B., Liang, F., He, H., Yang, S., and Sun, C. (2011) Nano-structured polyaniline-ionic liquid composite film coated steel wire for headspace solid-phase micro-extraction of organochlorine pesticides in water. J. Chromatogr. A, 1218: 6285–6291.
  • Mehdinia, A., Bashour, F., Roohi, F., Jabbari, A., Saleh, A. (2012) Preparation and evaluation of thermally stable nano-structured self-doped polythiophene coating for analysis of phthalate ester trace levels. J. Sep. Sci., 35: 563–570.
  • Bagheri, H., Khalilian, F., Naderi, M., and Babanezhad E. (2010) Membrane protected conductive polymer as micro-SPE device for the determination of triazine herbicides in aquatic media. J. Sep. Sci., 33: 1132–1138.
  • Bagheri, H., Aghakhani, A., Baghernejad, M., and Akbarinejad, A. (2012) Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase micro-extraction of phenol and chlorophenols from environmental samples, Anal. Chim. Acta, 716: 34–39.
  • Liu, X., Wang, X., Tan, F., Zhao, H., Quan, X., Chen, J.,and Li L., (2012) An electrochemically enhanced solid-phase micro-extraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples. Anal. Chim. Acta, 727: 26–33.
  • Shastri, L., Kailasa, S.K., and Wu, H. (2010) Nanoparticle-single drop micro-extraction as multifunctional and sensitive nanoprobes: Binary matrix approach for gold nanoparticles modified with (4-mercaptophenyliminomethyl)-2-methoxyphenol for peptide and protein analysis in MALDI-TOF MS. Talanta, 81: 1176–1182.
  • Wei, L., Ming-Biao, L., Bo-Ping, L., Zhi, Y., and Jian-Hua, D. (2008) Rapid determination of nicotine in urine with magnetic nanoparticles fluid based on three-phase hollow fiber liquid phase micro-extraction/ high performance liquid chromatography. J. Instrument. Anal., 27: 165–169.
  • Shi Z., and Lee, H.K. (2010) dispersive liquid-liquid micro-extraction coupled with dispersive μ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples. Anal. Chem., 82: 1540–1545.
  • Kailasa, S.K., and Wu, H. (2012) Dispersive liquid–liquid micro-extraction using functionalized Mg(OH)2 NPs with oleic acid as hydrophobic affinity probes for the analysis of hydrophobic proteins in bacteria by MALDI MS. Analyst, 137: 4490.
  • Pawliszyn, J. (1997) SPME method development: In Solid Phase Micro-extraction, Theory and Practice, 1st ed.; 97–139, Wiley-VCH: New York, NY.
  • Pawliszyn, J. (2009) Handbook of Solid Phase Micro-extraction; Elsevier Insights, Elsevier: Amsterdam,
  • Mills, G.A., and Walker, V. (2000) Headspace solid-phase micro-extraction procedures for gas chromatographic analysis of biological fluids and materials. J. Chromatogr. A, 902: 267–287.
  • Prosen, H., and Zupančič-Kralj, L. (1999) Solid-phase micro-extraction. TrAC Trends Anal. Chem., 18: 272–282.
  • Aresta, A., Vatinno, R., Palmisano, F., and Zambonin, C.G. (2006) Determination of Ochratoxin A in wine at sub ng/mL levels by solid-phase micro-extraction coupled to liquid chromatography with fluorescence detection. J. Chromatogr. A, 1115: 196–201.
  • Kailasa, S.K., and Wu H. (2010), Surface modified silver selinide nanoparticles as extracting probes to improve peptide/protein detection via nanoparticles-based liquid phase micro-extraction coupled with MALDI mass spectrometry. Talanta, 83: 527–534.
  • Motlagh, S., and Pawliszyn, J. (1993) On-line monitoring of flowing samples using solid phase micro-extraction-gas chromatography. Anal. Chim. Acta., 284: 265–273.
  • Du, X., Wang, Y., Ma, Q., Mao, X., and Hou, J. (2005) chemically modified mesoporous silica as a coating layer of solid-phase micro-extraction for determination of benzo[a]pyrene in water samples. Anal., Letters, 38: 487–498.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.