3,760
Views
55
CrossRef citations to date
0
Altmetric
Reviews

Pressure Swing Adsorption Technologies for Carbon Dioxide Capture

, , &
Pages 108-121 | Received 07 Dec 2013, Accepted 16 Apr 2015, Published online: 11 Nov 2015

REFERENCES

  • Olivier, J.G.J., Janssens-Maenhout, G., Muntean, M., and Peters, J.A.H. (2014) Trends in Global CO2 Emissions: 2014 Report. PBL Netherlands Environmental Assessment Agency and European Union Joint Research Center.
  • Othman, M.R., Martunus, Zakaria, R., and Fernando W.J.N. (2009) Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia: A review. Energ. Pol., 37: 1718–1735.
  • Philippart, C.J.M., Anadón, R., Danovaro, R., Dippner, J.W., Drinkwater, K.F., Hawkins, S.J., Oguz T., O’Sullivan G., and Reid P.C.J. (2011) Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. J. Exp. Mar. Biol. Ecol., 400: 52–69.
  • Anlauf, H., D’Croz, L., and O’Dea, A. (2011) A corrosive concoction: The combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J. Exp. Mar. Biol. Ecol., 397: 13–20.
  • Tynan, S. and Opdyke, B.N. (2011) Effects of lower surface ocean pH upon the stability of shallow water carbonate sediments. Sci. Total Environ., 409: 1082–1086.
  • Crim, R.N., Sunday, J.M., and Harley, C.D.G. (2011) Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). J. Exp. Mar. Biol. Ecol., 400: 272–277.
  • Pires, J.C.M., Martins, F.G., Alvim-Ferraz, M.C.M., and Simões, M. (2011) Recent developments on carbon capture and storage: An overview. Chem. Eng. Res. Des., 89: 1446–1460.
  • Wee, J.H. (2013) A review on carbon dioxide capture and storage technology using coal fly ash. Appl. Energ., 106: 143–151.
  • Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., and Wright, I. (2008) Progress in carbon dioxide separation and capture: A review. J. Environ. Sci., 20: 14–27.
  • Figueroa, J.D., Fout, T., Plasynski, S., Mcilvried, H., and Srivastava, R.D. (2008) Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Cont., 2: 9–20.
  • Stromberg, L. (2008) Pilot project update—Focus on European projects. Carbon Capture J., 2: 14–18.
  • Strube, R., Pellegrini, G., and Manfrida, G. (2011) The environmental impact of post-combustion CO2 capture with MEA, with aqueous ammonia, and with an aqueous ammonia-ethanol mixture for a coal-fired power plant. Energy, 36: 3763–3770.
  • Martunus, Helwani, Z., Wiheeb, A.D., Kim, J., and Othman, M.R. (2012) Improved carbon dioxide capture using metal reinforced hydrotalcite under wet conditions. Int. J. Greenhouse Gas Contl., 7: 127–136.
  • Dickmeis, J. and Kather, A. (2013) Offgas treatment downstream the gas processing unit of a pulverised coal-fired oxyfuel power plant with polymeric membranes and pressure swing adsorption. Energ. Proc., 37: 1301–1311.
  • Helwani, Z, Wiheeb, A.D, Kim, J, and Othman, M.R. (2015, in press) In-situ mineralization of carbon dioxide in a coal-fired power plant. Energ. Source Part A. DOI:10.1080/15567036.2013.813991.
  • Burdyny, T. and Struchtrup, H. (2010) Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy. 35: 1884–1897
  • Kanniche, M. and Bouallou, C. (2007) CO2 capture study in advanced integrated gasification combined cycle. Appl. Therm. Eng. 27: 2693–2702.
  • Simbeck, D.R. (2001) CO2 mitigation economics for existing coal-fired power plants. First National Conference on Carbon Sequestration, Washington D.C., May 14–17.
  • Wiheeb, A.D., Kim, J., and Othman, M.R. (2015) Surface affinity and inter-diffusivity of carbon dioxide inside hydrotalcite-silica micro-pores. J. Por. Media, 18: 123–128.
  • Othman, M.R. and Kim, J. (2008) Simulated adsorption and diffusion of CO2 gas across a meso-porous material using convective flow models. J. Korean Phys. Soc., 52: 1231–1236.
  • Shen, C., Yu, J., Li, P., Grande, C.A., and Rodrigues, A.E. (2011) Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads. Adsorption, 17: 179–188.
  • Cavalcante, C.L. (2000) Industrial adsorption separation processes: Fundamentals, modeling and applications. Latin Am. Appl. Res., 30: 357–364.
  • Reijers, H.T.J., Valster-Schiermeier, S.E.A., Cobden, P.D., and Van den Brink, R.W. (2006) Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Ind. Eng. Chem. Res., 45: 2522–2530.
  • Sircar, S. (2006) Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res., 45: 5435–5448.
  • Ho, M.T., Allinson, G.W., and Wiley, D.E. (2008) Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind. Eng. Chem. Res., 47: 4883–4890.
  • Zhang, J., Webley, P.A., and Xiao, P. (2008) Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energ. Convers. Manage., 49: 346–356.
  • Maring, B.J. and Webley, P.A. (2013) A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int J. Greenhouse Gas Contr., 15: 16–31.
  • Wang, L., Liu, Z., Li, P., Yu, J., and Rodrigues, A.E. (2012) Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem. Eng. J., 197: 151–161.
  • Zhen, L., Grande, C.A., Li, P., Yu, J., and Rodrigues A.E. (2011) Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas. Sep. Purif. Technol., 81: 307–317.
  • Dong, F., Lou, H., Kodama, A., Goto, M., and Hirose, T. (1999) A new concept in the design of pressure-swing adsorption processes for multicomponent gas mixtures. Ind. Eng. Chem. Res., 38: 233–239.
  • Voss, C. (2005) Applications of pressure swing adsorption technology. Adsorption, 11: 527–529.
  • Sircar, S. (2002) Pressure swing adsorption. Ind. Eng. Chem. Res., 41: 1389–1392.
  • Huang, W.C. and Chou, C. (2003) Comparison of radial- and axial-flow rapid pressure swing adsorption processes. Ind. Eng. Chem. Res., 42: 1998–2006.
  • Ruthven, D.M., Farooq, S., and Knaebel, K.S. (1994) Pressure Swing Adsorption; Wiley-VCH: USA, 67–74.
  • Sankararao, B. and Gupta, S.K. (2007) Multi-objective optimization of pressure swing adsorbers for air separation. Ind. Eng. Chem. Res., 46: 3751–3765.
  • Pires, J., De Carvalho, M.B., Ribeiro, F.R., and Derouane, E.G. (1993) Carbon-dioxide in Y zeolite and ZSM-20 zeolite—adsorption and infrared studies. J. Mol. Catal., 85: 295–303.
  • Yang, S.I., Choi, D.Y., Jang, S.C., Kim, S.H., and Choi, D.K. (2008) Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas. Adsorption, 14: 583–590.
  • Hyun, S.H., Song, J.K., Kwak, B.I., Kim, J.H., and Hong, S.A. (1999) Synthesis of ZSM-5 zeolite composite membranes for CO2 separation. J. Mater. Sci., 34: 3095–3103.
  • Gomes, V.G. and Yee, K.W.K. (2002) Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Sep. Purif. Technol., 28: 161–171.
  • Chou, C.T. and Chen, C.Y. (2004) Carbon dioxide recovery by vacuum swing adsorption. Sep. Purif. Technol., 39: 51–65.
  • Othman, M.R., Tan, S.C., and Bhatia, S. (2009) Separability of carbon dioxide from methane using MFI zeolite-silica film deposited on gamma-alumina support. Micro. Meso. Mater., 121: 138–144.
  • Böhm, J., Hunger, B., and Papp, H. (2005) Adsorption of carbon dioxid on zeolites NaX and NaY studied by a temporal analysis of products (TAP) system. Stud. Surf. Sci. Catal., 158: 1113–1120.
  • Wirawan, S.K. and Creaser, D. (2006) Multicomponent H2/CO/CO2 adsorption on BaZSM-5 zeolite. Sep. Purif. Technol., 52: 224–231.
  • Sebastian, V., Kumakiri, I., Bredesen, R., and Menendez, M. (2007) Zeolite membrane for CO2 removal: Operating at high pressure. J. Membrane Sci., 292: 92–97.
  • Aroua, M.K., Daud, W.M.A.W., Yin, C.Y., and Adinata, D. (2008) Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon. Sep. Purif. Technol., 62: 609–613.
  • Othman, M.R. (2009) Permeability and separability of methane and carbon dioxide across meso-porous Mg-Al hydrotalcite and activated carbon media. Chem. Eng. Sci., 64: 925–929.
  • Plaza, M., Pevida, C., Arenillas, A., Rubiera, F., and Pis, J.J. (2007) CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 86: 2204–2212.
  • Yong, Z., Mata, V.G., and Rodrigues, A.E. (2001) Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorption, 7: 41–50.
  • IPCC (Intergovernmental Panel on Climate Change. (2006) Carbon dioxide capture and storage: Summary for policymakers and technical summary. Reports of Working Group III of the IPCC, UNFCCC, Bilthoven, Netherland.
  • Yong, Z., Mata, V., and Rodrigues, A.E. (2001) Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTLc) at high temperature. Ind. Eng. Chem. Res., 40: 204–209.
  • Yong, Z., Mata, V., and Rodrigues, A.E. (2002) Adsorption of carbon dioxide at high temperature—A review. Sep. Purif. Technol., 26: 195–205.
  • Bonenfant, D., Kharoune, L., Sauvé, S., Hausler, R., Niquette, P., Mimeault, M., and Kharoune, M. (2009) Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. Int. J. Greenhouse Gas Contr., 3: 20–28.
  • Florin, N.H. and Harris, A.T. (2008) Preparation and characterization of a tailored carbon dioxide sorbent for enhanced hydrogen synthesis in biomass gasifiers. Ind. Eng. Chem. Res., 47: 2191–2202.
  • Othman, M.R., Rasid, N.M., and Fernando, W.J.N. (2006) Effects of thermal treatment on the micro-structures of co-precipitated and sol–gel synthesized (Mg–Al) hydrotalcites. Micro. Meso. Mater., 93: 23–28.
  • Othman, M.R and Kim, J. (2008) Permeation characteristics of H2, N2 and CO2 in a binary mixture across meso-porous Al2O3 and Pd–Al2O3 asymmetric composites. Micro. Meso. Mater., 112: 403–410.
  • Manovic, V. and Anthony, E.J. (2007) Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environ. Sci. Technol., 41: 1420–1425.
  • Teng F., Qu, W., Wen, G., Wang, Z., Tian, Z., Yang, X., Xu, P., Zhu, Y., and Xiong, G. (2008) Effect of the flowing gases of steam and CO2 on the texture and catalytic activity for methane combustion of MgO powders. Micro. Meso. Mater., 111: 620–626.
  • Ochoa-Fernandez, E., Rusten, H.K., Jakobsen, H.A., Rønning, M., Holmen, A., and Chen, D. (2005) Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: Sorption kinetics and reactor. Catal. Today, 106: 41–46.
  • Ida, J., Xiong, R., and Lin, Y.S. (2004) Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep. Purif. Technol., 36: 41–51.
  • Kato, M, Yoshikawa, S., and Nakagawa, K. (2003) Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. J. Mater. Sci. Lett., 21: 485–487.
  • Kato, M., Nakagawa, K., Essaki, K., Maezawa, Y., Takeda, S., Kogo, R., and Hagiwara, Y. (2005) Novel CO2 absorbents using lithium-containing oxide. Int. J. Appl. Ceram. Technol,. 2: 467–475
  • Venegas, M.J., Fregoso-Israel, E., Escamilla, R., and Pfeiffer, H. (2007). Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: Study of the particle size effect. Ind. Eng. Chem. Res., 46: 2407–2412.
  • Xiong, R., Ida, J., and Lin, Y.S. (2003) Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chem. Eng. Sci., 58: 4377–4385.
  • Yong, Z. and Rodrigues, A.E. (2002) Hydrotalcite-like compounds as adsorbents for carbon dioxide. Energ. Convers. Manage., 43: 1865–1876.
  • Othman, M.R., Helwani, Z., Martunus, and Fernando, W.J.N. (2009) Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Appl. Organomet. Chem., 23: 335–346.
  • Othman, M.R, Rasid, N.M, and Fernando, W.J.N. (2006) Mg-Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chem. Eng. Sci., 61: 1555–1560.
  • Ebner, A.D, Reynolds, S.P, and Ritter, J.A. (2006) Understanding the adsortion and desorption behavior of CO2 on a K-promoted hydrotalcite-like compound (HTlc) through nonequilibrium dynamic isotherms. Ind. Eng. Chem. Res., 45: 6387–6392.
  • Ebner, A.D, Reynolds, S.P, and Ritter, J.A. (2007) Nonequilibrium kinetic model that describes the reversible adsorption and desorption behavior of CO2 in a K-promoted hydrotalcite-like compound. Ind. Eng. Chem. Res., 46: 1737–1744.
  • Ding, Y. and Alpay, E. (2000) Equilibria and kinetics of high-temperature CO2 adsorption on hydrotalcite adsorbent. Chem. Eng. Sci., 55: 3461–3474.
  • Ding, Y. and Alpay, E. (2001) High temperature recovery of CO2 from flue gases using hydrotalcite adsorbent. Trans. IchemE, 79: 45–51.
  • Reynolds, S.P., Ebner, A.D., and Ritter, J.A. (2006) Stripping PSA cycles for CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent. Ind. Eng. Chem. Res., 45: 4278–4294.
  • Reynolds, S.P., Mehrotra, A., Ebner, A.D., and Ritter, J.A. (2008) Heavy reflux PSA cycles for CO2 recovery from flue gas: Part I. Performance evaluation. Adsorption, 14: 399–413.
  • Reddy, M.K.R., Xu, Z., Lu, A.G.Q., and Da Costa, J.C.D. (2008) Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Ind. Eng. Chem. Res., 47: 2630–2635.
  • Rota, R. and Wankat, P.C. (1990) Intensification of pressure swing adsorption processes. AIChE J., 36: 1299–1312.
  • Ficicilar, B. and Dogu, T. (2006) Breakthrough analysis for CO2 removal by activated hydrotalcite and soda ash. Catal. Today. 115: 274–278.
  • Yang, J.I. and Kim, J.N. (2006) Hydrotalcite for CO2 at high temperature. Kor. J. Chem. Eng., 23: 77–80.
  • Moreira, R., Soares, J., Casarin, G.L., and Rodrigues, A.E. (2006) Adsorption of CO2 on hydrotalcite-like compounds in a fixed bed. Sep. Sci. Technol., 41: 341–357.
  • Koumpouras, G.C, Alpay, E, Lapkin, A, Ding, Y, and Stepanek, F. (2007) The effect of adsorbent characteristics on the performance of a countinuous sorption-enhanced steam methane reforming process. Chem. Eng. Sci., 62: 5632–5637.
  • Lee, K.B., Verdooren, A., Caram, H.S., and Sircar, S. (2007) Chemisorption of carbon dioxide on potassium-carbonate-promoted hydrotalcite. J. Coll. Interf. Sci., 308: 30–39.
  • Martunus, Othman, M.R. and Fernando, W.J.N. (2014) Method for capturing and fixing carbon dioxide and apparatus for carrying out said method. Switzerland patent 703745.
  • Cobden, P.D., Van Beurden, P., Reijers, H.T., Elzinga, G.D., Kluiters, S.C.A., Dijkstra, J.W., Jansen, D., and Van den Brink, R.W. (2007) Sorption-enhanced hydrogen production for pre-combustion CO2 capture: Thermodynamic analysis and experimental results. Int. J. Greenhouse Gas Contr., 1: 170–179.
  • Oliveira, E.L.G., Grande, C.A., and Rodrigues, A.E. (2008) CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Sep. Purif. Technol., 62: 137–147.
  • Hutson, N.D. and Attwood, B.C. (2008) High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14: 781–789.
  • Martunus, Helwani, Z., Wiheeb, A.D., Kim, J., amd Othman, M.R. (2012) In-situ carbon dioxide capture and fixation from a hot flue gas. Int. J. Greenhouse Gas Contr., 6: 179–188.
  • Martunus, Othman, M.R, and Fernando, W.J.N. (2011) Elevated temperature carbon dioxide capture via reinforced metal hydrotalcite. Micro. Meso. Mater., 138: 110–117.
  • Wiheeb, A.D., Ahmad, M.A., Murat, M.N., Kim, J., and Othman, M.R. (2014) Predominant gas transport in microporous hydrotalcite–silica membrane. Transp. Por. Med., 102: 59–70.
  • Wiheeb, A.D., Ahmad, M.A., Murat, M.N., Kim, J., and Othman, M.R. (2014) The declining affinity of microporous hydrotalcite-silica membrane for carbon dioxide. J. Por. Med., 17: 159–167.
  • Wang, X.P., Yu, J.J., Cheng, J., Hao, Z.P., and Xu, Z.P. (2008) High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environ. Sci. Technol., 42: 614–618.
  • Reynolds, S.P., Ebner, A.D., and Ritter, J.A. (2005) Concentration and recovery of carbon dioxide at high temperature with heavy reflux PSA cycles. In AIChE Conf. Proc.; American Institute of Chemical Engineers: Cincinnati, OH, 2501.
  • Mayorga, S.G, Weigel, S.J, Gaffney, T.R, Brzozowski, J.R. (2001) Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures. European Patent No. 1074297.
  • Meyer, J., Aaberg, R.J., and Andresen, B. (2005) Generation of hydrogen fuels for the thermal power plant with integrated CO2 capture using a CaO-CaCO3 cycle. In Carbon Dioxide Capture For Storage In Deep Geologic Formations Results From the CO2 Capture Project; Thomas, D.C. and Benson, S.M., eds.; Elsevier: Oxford, UK, 1: 213.
  • Hägg, M.B. and Lindbråthen, A. (2005) CO2 capture from natural gas fired power plants by using membrane technology. Ind. Eng. Chem. Res., 44: 7668–7675.
  • Singh, R., Ram Reddy, M.K., Wilson, S., Joshi, K., Dinis da Costa, J.C., and Webley, P. (2009) High temperature materials for CO2 capture. Energy Procedia, 1: 623–630.
  • Knaebel, S.P., Ko, D., and Ahmed, S. (2005) Simulation and optimization of a pressure swing adsorption system: recovering hydrogen from methane. Adsorption, 11: 615–620.
  • Santos, M.P.S., Grande, C.A., and Rodrigues, A.E. (2011) Pressure swing adsorption for biogas upgrading. Effect of recycling streams in PSA design. Ind. Eng. Chem. Res., 50: 974–985.
  • Park, J.H, Beum, H.T, Kim, J.N, and Cho, S.H. (2002) Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas. Ind. Eng. Chem. Res., 41: 4122–4131.
  • Ribeiro, A.M, Santos, J.C., and Rodrigues, A.E. (2010) PSA design for stoichiometric adjustment of bio-syngas for methanol production and co-capture of carbon dioxide. Chem. Eng. J. 163: 355–363.
  • Ribeiro, A.M., Santos, J.C., and Rodrigues, A.E. (2011) Pressure swing adsorption for CO2 capture in Fischer-Tropsch fuels production from biomass. Adsorption, 17: 443–452.
  • Choi, W.K., Kwon, T.I., Yeo, Y.K., Lee, H., Song, H.K., and Na, B.K. (2003) Optimal operation of the pressure swing adsorption process for CO2 recovery. Kor. J. Chem. Eng., 20: 617–623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.