2,404
Views
102
CrossRef citations to date
0
Altmetric
Reviews

Current Development and Challenges of Mixed Matrix Membranes for CO2/CH4 Separation

, , , &
Pages 321-344 | Received 22 Aug 2015, Accepted 14 Jan 2016, Published online: 29 Feb 2016

REFERENCES

  • Hamid, A.M. (2006) Parametric analysis of CO2 separation from natural gas by adsorption process. MSc thesis, Universiti Teknologi, Petronas: Malaysia.
  • Demirbas, A. (2010) Methane Gas Hydrate Green Energy and Technology, 22nd ed.; Springer Science & Business Media: London, UK.
  • Bhide, B.D., Voskericyan, A., and Stern, A. (1998) Hybrid processes for the removal of acid gases from natural gas. J Membrane Sci., 140: 27–49
  • Hanif, A., Suhartanto, T., and Green, M. (2002) Possible utilisation of CO2 on Natuna’s gas field using dry reforming of methane to syngas (CO & H2), presented in SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia.
  • Darman, N.H. and Harun, A.R. (2006) Technical challenges and solutions on natural gas development in Malaysia, in The Petroleum Policy and Management (PPM) Project 4th Workshop of the China-Sichuan Basin Case Study, Petroliam Nasional Berhad, Beijing, China.
  • Demas, A. (2013) The gigaton question: How much geologic carbon storage potential does the United States Have? http://www.usgs.gov/blogs/features/usgs_top_story/the-gigaton-question-how-much-geologic-carbon-storage-potential-does-the-united-states-have/ ( accessed May, 2014).
  • He, X. and Hägg, M.-B. (2012) Membranes for environmentally friendly energy processes. Membranes, 2: 706–712.
  • Zhao, Q., Leonhardt, E., MacConnell, C., Frear, C., and Chen, S. (2010) Purification technologies for biogas generated by anaerobic digestion, in Climate Friendly Farming, CSANR Research Report 2010. http://csanr.wsu.edu/publications/researchreports/CFF%20Report/CSANR2010-001.Ch09.pdf ( accessed June 2014).
  • Jusoh, N., Lau, K.K., Shariff, A.M., and Yeong, Y.F. (2014) Capture of bulk CO2 from methane with the presence of heavy hydrocarbon using membrane process. Int. J. Greenhouse Gas Cntrl., 22: 213–222.
  • Bernardo, P., Drioli, E., and Golemme, G. (2009) Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res., 48: 4638–4663.
  • Mohshim, D.F., Mukhtar, H., Man, Z., and Nasir, R. (2013) Latest development on membrane fabrication for natural gas purification: A review. Journal of Engineering, 2013: 7–13.
  • Baker, R.W. and Lokhandwala, K. (2008) Natural gas processing with membane: Overview. Ind. Eng. Chem. Res., 4: 2109–2021.
  • Kapantaidakis, G.C., Kaldis, S.P., Sakellaropoulos, G.P., Chira, E., Loppinet, B., and Floudas, G. (1999) Interrelation between phase state and gas permeation in polysulfone/polyimide blend membranes. J. Polym. Sci., Pt. B: Polym. Phys., 37: 2788–2798.
  • Shimekit, B. and Mukhtar, H. (2012) Natural gas purification technologies–major advances for CO2 separation and future directions. In Advances in Natural Gas Technology; Al-Megren, H., ed.; 1st ed. INTECH Open Access Publisher: Croatia, EU, 235–270.
  • Mulder, M. (1996) Basic Principles of Membrane Technology, 2nd ed.; Springer Science & Business Media: Enschede, Netherlands.
  • Drioli, E. and Barbieri, G. (2011) Membrane Engineering for the Treatment of Gases: Gas-Separation Problems with Membranes, 1st ed.; Royal Society of Chemistry: London, UK.
  • Chun, Z. (2003) A study of polyimide thin films-physical aging and plasticization behaviours. MSc thesis. National University of Singapore: Singapore.
  • Im, H., Kim, H., and Kim, J. (2009) Novel miscible blends composed of poly (methyl methacrylate) and 2,2-Bis (3,4-Carboxyphenyl) hexafluoropropane dianhydride-based polyimides with optical grade clarity. Mater Trans., 50: 1730–1736.
  • José, N.M., Prado, L.A.S.A., and Yoshida, I.V.P. (2004) Synthesis, characterization, and permeability evaluation of hybrid organic–inorganic films. J. Polym. Sci. Pt. B: Polym Phys. 42: 4281–4292.
  • Costello, L.M., Koros, W.J. (1992) Temperature dependence of gas sorption and transport properties in polymers: measurement and application. Ind. Eng. Chem. Res., 31: 2708–2714.
  • Ghosal, K., Freeman, B.D., Chern, R.T., Alvarez, J.C., de la Campa, J.G., and de Abajo, J. (1995) Gas separation properties of aromatic polyamides with sulfone groups. Polymer, 36: 793–800.
  • Sridhar, S., Aminabhavi, T.M., and Ramakrishna M. (2007) Separation of binary mixtures of carbon dioxide and methane through sulfonated polycarbonate membranes. J. Appl. Polym. Sci., 105: 1749–1756.
  • Tin, P.S. (2005) Membrane materials and fabrications for gas separation. PhD thesis. National University of Singapore: Singapore.
  • Vu, D.Q., Koros, W.J., and Miller, S.J. (2003) Effect of condensable impurities in CO2/CH4 gas feeds on carbon molecular sieve hollow-fiber membranes. Ind. Eng. Chem. Res., 42: 1064–1075.
  • Ordoñez, M.J.C., Balkus Jr., K.J., Ferraris, J.P., and Musselman, I.H. (2010) Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membrane Sci., 361: 28–37.
  • Nafisi, V. and Hägg M.-B. (2014) Gas separation properties of ZIF-8/6FDA-durene diamine mixed matrix membrane. Sep. Purif. Technol., 128: 31–38.
  • Askari, M. and Chung, T.-S. (2013) Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J. Membrane Sci., 444: 173–183.
  • Liu, S.L., Wang, R., Chung, T.S., Chng, M.L., Liu, Y., and Vora, R.H. (2002). Effect of diamine composition on the gas transport properties in 6FDA-durene/3,3′-diaminodiphenyl sulfone copolyimides. J. Membrane Sci., 202: 165–176.
  • Bae, T.-H., Lee, J.S., Qiu, W. Koros, W.J., Jones, C.W., and Nair, S. (2010) A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angew Chem. Int. Ed., 49: 9863–9866.
  • Chan, S.S., Chung, T.S., Liu, Y., and Wang, R. (2003) Gas and hydrocarbon (C2 and C3) transport properties of co-polyimides synthesized from 6FDA and 1,5-NDA (naphthalene)/Durene diamines. J. Membrane Sci., 218: 235–245.
  • Robeson, L.M. (2008) The upper bound revisited. J. Membrane Sci., 320: 390–400.
  • Mallada, R. and Menéndez, M. (2008) Inorganic Membranes: Synthesis, Characterization and Applications: Synthesis, Characterization and Applications, vol. 13. Membrane Science and Technology, 1st ed.; Elsevier: Oxford, UK.
  • Ahmed, I., Yusof, Z.A.M., and Beg, M.D.H. (2010) Fabrication of polymer based mix matrix membrane—A short review. Int. J. Basic Appl. Sci., 10: 14–19.
  • Zhang, Y., Sunarso, J., Liu, S., and Wang, R. (2013) Current status and development of membranes for CO2/CH4 separation: A review. Int. J. Greenhouse Gas Ctrl., 12: 84–107.
  • Himeno, S., Tomita, T., Suzuki, K., Nakayama, K., Yajima, K., and Yoshida, S. (2007) Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res., 46: 6989–6997.
  • Centeno, T.A. and Fuertes A.B. (1999) Supported carbon molecular sieve membranes based on a phenolic resin. J. Membrane Sci., 160: 201–211.
  • Li, S., Falconer, J.L., and Noble, R.D. (2006) Improved SAPO-34 membranes for CO2/CH4 separations. Adv. Mater, 18: 2601–2603.
  • Zhu, W., Hrabanek, P., Gora, L., Kapteijn, F., and Moulijn, J.A. (2006) Role of adsorption in the permeation of CH4 and CO2 through a Silicalite-1 membrane. Ind. Eng. Chem. Res., 45: 767–776.
  • Poshusta, J.C., Noble, R.D., and Falconer, J.L. (1999) Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J. Membrane Sci., 160: 115–125.
  • van den Broeke, L.J.P., Kapteijn F., and Moulijn, J.A. (1999) Transport and separation properties of a silicalite-1 membrane—II. Variable separation factor. Chem. Eng. Sci., 54: 259–269.
  • Raman, N.K. and Brinker, C.J. (1995) Organic “template” approach to molecular sieving silica membranes. J. Membrane Sci., 105: 273–279.
  • Tomita, T., Nakayama, K., and Sakai, H. (2004) Gas separation characteristics of DDR type zeolite membrane. Micropor. Mesopor. Mater., 68: 71–75.
  • Cui, Y., Kita, H., and Okamoto, K.-I. (2004) Zeolite T membrane: Preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability. J. Membrane Sci., 236: 17–27.
  • Mirfendereski, S.M., Mazaheri, T., Sadrzadeh, M., and Mohammadi, T. (2008) CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure. Sep. Purif. Technol., 61: 317–323.
  • He, X., Lie, J.A., Sheridan, E., and Hägg M.-B. (2011) Preparation and characterization of hollow fiber carbon membranes from cellulose acetate precursors. Ind. Eng. Chem. Res., 50: 2080–2087.
  • Vu, D.Q., Koros, W.J., and Miller, S.J. (2003) Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membrane Sci., 211: 311–334.
  • Ismail, A.F., Rana, D., Matsuura, T., and Foley, H.C. (2011) Carbon-Based Membranes for Separation Processes, 1st ed.; Springer Science & Business Media: London, UK.
  • Adams, R.T., Lee, J.S, Bae, T.H. Ward, J.K, Johnson, J.R., Jones, C.W., Nair, S., and Koros. W.J. (2011) CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes. J. Membrane Sci., 367: 197–203.
  • Basu, S., Cano-Odena, A., and Vankelecom, I.F.J. (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep. Purif. Technol., 81: 31–40.
  • Ismail, A.F., Goh, P.S., Sanip, S.M., and Aziz, M. (2009) Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep. Purif. Technol., 70: 12–26.
  • Moghadam, F., Omidkhah, M.R.,Vasheghani-Farahani, E., Pedram, M.Z., and Dorosti, F. (2011) The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep Purif Technol., 77: 128–136.
  • Momeni, S.M. and Pakizeh, M. (2012) Preparation, characterization and gas permeation study of Psf/MgO nanocomposite membrane. Braz. J. Chem. Eng., 30: 589–597.
  • Galve, A.,Sieffert, D., Vispe, E., Tellez, C., Coronas, J., and Staudt, C. (2011) Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. J. Membrane Sci., 370: 131–140.
  • Galve, A., Sieffert, D., Staudt, C., Frerrando, M., Guell, C., Tellez, C., and Coronas, J. (2013) Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. J. Membrane Sci., 431: 163–170.
  • Jeong, H.-K.,Krych, W., Ramanan, H., Nair, S., Marand, E., and Tsapatsis, M. (2004) Fabrication of polymer/selective-flake nanocomposite membranes and their use in gas separation. Chem Mater., 16: 3838–3845.
  • Choi, S., Coronas, J., Jordan, E., Oh, W., Nair, S., Onorato, F., Shantz, D.F., and Tsapaitsis, M. (2008) Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angew Chem. Int. Ed., 47: 552–555.
  • Rubio, C., Casada, C. Gorgojo, P., Etayo, F., Uriel, S., Tellez, C., and Coronas, J. (2010) Exfoliated titanosilicate material UZAR-S1 obtained from JDF-L1. Eur. J. Inorg. Chem., 2010: 159–163.
  • Gorgojo, P., Sieffert, D., Staudt, C., Tellez, C., and Coronas, J. (2012) Exfoliated zeolite Nu-6(2) as filler for 6FDA-based copolyimide mixed matrix membranes. J. Membrane Sci., 411–412:146–152.
  • Kim, W.-G., Lee, J.S., Bucknall, D.G., Koros, W.J., and Nair, S. (2013) Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. J. Membrane Sci., 441: 129–136.
  • Castarlenas, S., Gorgojo, P., Casado-Coterillo, C., and Masheshwari, S. (2013) Melt compounding of swollen titanosilicate JDF-L1 with polysulfone to obtain mixed matrix membranes for H2/CH4 separation. Ind. Eng. Chem. Res., 52: 1901–1907.
  • Khan, A.L., Cano-Odena, A., Gutiérrez, B., Minguillón, C., and Vankelecom, I.F.J. (2010) Hydrogen separation and purification using polysulfone acrylate–zeolite mixed matrix membranes. J. Membrane Sci., 350: 340–346.
  • Yi, L. (2006) Development of Mixed Matrix Membranes for Gas Separation Application. PhD thesis. National University of Singapore: Singapore.
  • Duval, J.-M. (1993) Adsorbent filled polymeric membranes - Application to Pevaporation and Gas Separation. PhD thesis. University Twente: Enschede, Netherlands.
  • International Zeolite Association. Database of Zeolite Structure (Online Database). http://www.iza-structure.org/databases/ ( accessed March 2014).
  • Goh, P.S., Ismail, A.F., Sanip, S.M., Ng, B.C., and Aziz, M. (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol., 81: 243–264.
  • Paul, D.R. and Kemp, D.R. (1973) The diffusion time lag in polymer membranes containing adsorptive fillers. J. Polym. Sci. Pol. Sym., 41: 79–93.
  • Duval, J.M., Folkers, B., Mulder, M.H.V., Desfrandchamps, G., and Smolders, C.A. (1993) Adsorbent filled membranes for gas separation. Part 1: Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents. J. Membrane Sci., 80: 189–198.
  • Sen, D., Kalipcilar, H., and Yilmaz, L. (2006) Development of zeolite filled polycarbonate mixed matrix gas separation membranes. Desalination, 200: 222–224.
  • Kusworo, T.D., Ismail, A.F., Mustafa, A., and Li, K. (2008) The effect of type zeolite on the gas transport properties of polyimide-based mixed matrix membranes. Reaktor, 12: 68–77.
  • Surya Murali, R., Ismail, A.F., Rahman, M.A., and Sridhar, S. (2014) Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep. Purif. Technol., 129: 1–8.
  • Duval, J.M., Kemperman, A.J.B., Folkers, B., Mulder, M.H.V., Desgrandchamps, G., and Smolders, C.A. (1994) Preparation of zeolite filled glassy polymer membranes. J. Appl. Polym. Sci., 54: 409–418.
  • Musselman, I., Balkus, K.J., and Ferraris, J.P. (2009) Mixed matrix membranes for CO2 and H2 gas separations using metal-organic frameworks and mesoporous hybrid silica. The University of Texas. (Technical Report): Austin, Texas.
  • Amooghin, A.E. (2015) Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid 5218 matrix. RSC Adv., 5: 8552–8565.
  • Zhang, Y., Balkus, Jr., K.J., Musselman, I.H., and Ferraris, J.P. (2008) Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles. J. Membrane Sci., 325: 28–39.
  • Peydayesh, M., Asarehpour, S., Mohammadi, T., and Bakhtiari, O. (2013) Preparation and characterization of SAPO-34 – Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chem. Eng. Res. Des., 91:1335–1342.
  • Junaidi, M.U.M., Khoo, C.P., Leo, C.P., and Ahmad, A.L. (2014) The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Micropor. Mesopor. Mater., 192: 52–59.
  • Junaidi, M.U.M., Leo, C.P., Ahmad, A.L., Kamal, N.M., and Chew, T.L. (2014) Carbon dioxide separation using asymmetric polysulfone mixed matrix membranes incorporated with SAPO-34 zeolite. Fuel Proc. Technol., 118: 125–132.
  • Venna, S.R. and Carreon M.A. (2011) Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir. 27: 2888–2894.
  • Li, S. and Fan, C.Q. (2010) High-flux SAPO-34 membrane for CO2/N2 separation. Ind. Eng. Chem. Res., 49: 4399–4404.
  • Jha, P. and Way, J.D. (2008) Carbon dioxide selective mixed-matrix membranes formulation and characterization using rubbery substituted polyphosphazene. J. Membrane Sci., 324: 151–161.
  • Karatay, E., Kalıpçılar, H., and Yılmaz, L. (2010) Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes. J. Membrane Sci., 364: 75–81.
  • Zhao, D., Ren, J., Li, H., Hua, K., and Deng, M. (2014) Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. J. Energy Chem., 23: 227–234.
  • Meshkat, S., Rabiee, H., Soltanieh, M., Mousavi, S.A., and Ghadimi, A. (2015) Gas permeration properties of polycarbonate/SAPO-34 mixed matrix membrane for CO2 separation. Presented at The 15th Iranian National Congress of Chemical Engineering, University of Tehran, Iran.
  • Rabiee, H., Meshkat Alsadat, S., Soltanieh, M. Mousavi, S.A., and Ghadimi, A. (2015) Gas permeation and sorption properties of poly(amide-12-b-ethylene oxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. J. Ind. Eng. Chem., 27: 223–239.
  • Venna, S. and Carreon, M.A. (2014) Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci., 120: 174–190.
  • Bergh, J.V.d., Zhu, W., Gascon, J., Moulijn, J.A., and Kapteijn, F. (2008) Separation and permeation characteristics of a DDR3 zeolite membrane. J. Membrane Sci., 316: 35–45.
  • Zhou, Z. and Nair, S. (2014) Zeolite DDR nanoparticles. U.S. Patent US 20120247336 A1, October 4, 2012.
  • Acton, Q.A. (2013) Inorganic Carbon Compounds—Advances in Research and Application: 2013 Edition: Scholarly Brief, 1st ed. ScholarlyEditions: Atlanta, Georgia.
  • Muhammad, M., Yeong, Y.F., Lau, K.K., and Mohd Shariff, A. (2014) Issues and challenges in the development of deca-dodecasil 3 rhombohedral membrane in CO2 capture from natural gas. Sep. Purif. Rev., 44: 331–340
  • Baker, R.W. (1991) Membrane Separation Systems: Recent Developments and Future Direction, 1st ed.; Noyes Data Corp: Park Ridge, New Jersey.
  • Zulhairun, A.K., Ng, B.C., Ismail, A.F., Surya Murali, R., and Abdullah, M.S. (2014) Production of mixed matrix hollow fiber membrane for CO2/CH4 separation. Sep. Purif. Technol., 137: 1–12.
  • Li, Y., Chung, T.S., Huang, Z., and Kulprathipanja, S. (2006) Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation. J. Membrane Sci., 277: 28–37.
  • Jiang, L.Y., Chung, T.S., and Kulprathipanja, S. (2006) Fabrication of mixed matrix hollow fibers with intimate polymer–zeolite interface for gas separation. AIChE J., 52: 2898–2908.
  • Pereira, C.C., Nobrega, R., and Borges, C.P. (2000) Spinning process variables and polymer solution effects in the die-swell phenomenon during hollow fiber membranes formation. Braz. J. Chem. Eng., 17: 599–606.
  • Husain, S. (2006) Formation Mixed matrix dual layer hollow fiber membranes for natural gas separation. PhD thesis. Georgia Institute of Technology: Atlanta, Georgia.
  • Trzpit, M., Soulard, M., Patarin, J., Desbiens, N., Cailiez, F., Boutin, A., Demachy, I., and Fuschs, A.H. (2007) The effect of local defects on water adsorption in silicalite-1 zeolite: A joint experimental and molecular simulation study. Langmuir, 23: 10131–10139.
  • Adams, R., Carson, C., Ward, J., Tannenbaum, R., and Koros, W.J. (2010) Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater., 131: 13–20.
  • Shu, H. and Koros, W.J. (2007) A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces. J. Phys. Chem. C, 111: 652–657.
  • Breck, D.W. (1973) Zeolite Molecular Sieves: Structure, Chemistry, and Use, 1st ed. John Wiley & Sons Inc.: Hoboken, New Jersey.
  • Li, J.-R., Sculley, J., and Zhou, H.-C. (2012) Metal-organic frameworks for separations. Chem Rev. 112: 869–932.
  • Car, A., Stropnik, C., and Peinemann, K.-V. (2006) Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation. Desalination, 200: 424–426.
  • Zhang, Y.F., Mussleman, I.H., Ferraris, J.P., and Balkus, K.J. (2008) Gas permeability properties of Matrimid (R) membranes containing the metal-organic framework Cu-BPY-HFS. J. Membrane Sci., 313: 170–181.
  • Perez, E.V., Balkus Jr, K.J., Ferraris, J.P., and Musselamn, I.H. (2009) Mixed-matrix membranes containing MOF-5 for gas separations. J. Membrane Sci., 328: 165–173.
  • Jeazet, H., Koschine, T., Staudt, C., Raetzke, K., and Janiak, C. (2013) Correlation of gas permeability in a metal-organic framework MIL-101(Cr)–polysulfone mixed-matrix membrane with free volume measurements by positron annihilation lifetime spectroscopy (PALS). Membranes, 3: 331–353.
  • Zornoza, B., Seoane, B., Zarnaro, J.M., Téllez, C., and Coronas, J. (2011) Combination of MOFs and zeolites for mixed-matrix membranes. Chem. Phys. Chem., 12: 2781–2785.
  • Caro, J. (2011) Are MOF membranes better in gas separation than those made of zeolites? Curr. Opin. Chem. Eng., 1: 77–83.
  • Yehia, H., Pisklak, T.J., Ferraris, J.P., Balkus Jr., K.J., and Musselman, I.H. (2004) Methane facilitated transport using copper(II) biphenyl dicarboxylate-triethylenediamine/poly (3-acetoxyethylthiophene) mixed matrix membranes. Polym. Prepr., 45: 35–36.
  • Guo, H., Zhu,G., Hewitt, I.J., and Qiu, S. (2009) “Twin copper source” growth of metal−organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc., 131: 1646–1647.
  • Keskin, S. and Sholl, D.S. (2010) Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification. Energy Environ. Sci., 3: 343–351.
  • Venna, S.R. (2010) Molecular engineering design of the SAPO-34 and ZIF-8 membranes for CO2 separation from CH4 and N2. PhD thesis. University of Louisville: Louisville, Kentucky.
  • Schejn, A., Balan, L., Falk, V., Aranda, L., Medjahdi, G., and Schneider, R. (2014) Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. Cryst. Eng. Comm., 16: 4493–4500.
  • Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., and Yaghi, O.M. (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319: 939–943.
  • Li, T., Pan, Y., Peinemann, K-V., and Lai, Z. (2013) Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membrane Sci., 425–426:235–242.
  • Japip, S., Wang, H., Ziao, Y., and Chung, T.S. (2014) Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membrane Sci., 467: 162–174.
  • Low, J.J., Benin, A.I., Jakubczak, P., Abrahamian, J.F., Faheem, S.A., and Willis, R.R. (2009) Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration. J. Am. Chem. Soc., 131: 15834–15842.
  • Song, Q., Nataraj, S.K., Roussenova, M.V., Tan, J.C., Hughes, J., Li, W., Bourgoin, P., Ashraf Alam, M., Cheetham, A.K, Al-Muhtaseb, S.A., and Sivaniah, E. (2012) Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci., 5: 8359–8369.
  • Bushell, A.F., Attfield, M.P., Mason, C.R., Budd, P.M., YampolskiiI, Y., Starannikova, L., Rebrov, A., Bazzarelli, F., Bernardo, P., Carolus Jansen, J., Lanc, M., Friess, K., Shantarovich, V., and Isaeva, V. (2013) Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membrane Sci., 427: 48–62.
  • Nordin, A.F., Ismail, A.F., and Mustafa, A. (2014) Synthesis and preparation of asymmetric PSF/ZIF-8 mixed matrix membrane for CO2/CH4 separation. J. Teknologi, 69: 73–76.
  • Hao, L., Li, P., Yang, T., and Chung, T.S. (2013) Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. J. Membrane Sci., 436: 221–231.
  • Zhang, L., Hu, Z., and Jiang, J. (2012) Metal–organic framework/polymer mixed-matrix membranes for H2/CO2 separation: A fully atomistic simulation study. J. Phys. Chem. C, 116: 19268–19277.
  • Yilmaz, G. and Keskin, S. (2012) Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO2, CH4, and H2 separations using ions. Ind. Eng. Chem. Res., 51: 14218–14228.
  • Atci, E. and Keskin, S. (2012) Atomically detailed models for transport of gas mixtures in ZIF membranes and ZIF/polymer composite membranes. Ind. Eng. Chem. Res., 51: 3091–3100.
  • Weng, T.-H., Tseng, H.-H., and Wey, M.-Y. (2010) Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. Int. J. Hydrogen Energy, 35: 6971–6983.
  • Reid, B.D., Ruiz-Trevino, F.A., Musselman, I.H., Balkus, K.J., and Ferraris, J.P. (2001) Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Chem. Mater., 13: 2366–2373.
  • Vanherck, K., Aerts, A., Martens, J., and Vankelecom, I. (2010) Hollow filler based mixed matrix membranes. Chem. Commun., 46: 2492–2494.
  • Rahmat, N., Abdullah, A.Z., and Mohamed, A.R. (2010) A review: Mesoporous Santa Barbara Amorphous-15, types, synthesis and its applications towards biorefinery production. Am. J. Appl. Sci., 7: 1579–1586.
  • Huirache-Acuna, R., Nava, R., Peza-Ledesma, Lara-Romero, J., Alonso-Nunez, G., Pawelec, B., and Rivera-Munoz, E.M. (2013) SBA-15 Mesoporous silica as catalytic support for hydrodesulfurization catalysts—Review. Materials, 6: 4139–4167.
  • Tseng, H.-H., Shiu, P.-T., and Lin, Y.-S. (2011) Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. Int. J. Hydrogen Energy, 36: 15352–15363.
  • Li, L., Wang,T., Liu, Q., Cao, Y., and Qiu, J. (2012) A high CO2 permselective mesoporous silica/carbon composite membrane for CO2 separation. Carbon, 50: 5186–5195.
  • Kruk, M. (2012) Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates. Acc. Chem. Res., 45: 1678–1687.
  • Kwon, S., Singh,R.K., Perez, R.A., Abou Neel, E.A., Kim, H.-W., and Chrzanowski, W. (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J. Tissue Eng., 4: 2041731413503357.
  • Zornoza, B., Esekhile, O., Koros, W.J., Téllez, C., and Coronas, J. (2011) Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation. Sep. Purif. Technol., 77: 137–145.
  • Sinha Ray, S. and Okamoto, M. (2003) Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci., 28: 1539–1641.
  • Kim, W.-G. (2013) Nanoporous layered oxide materials and membranes for gas separations. PhD thesis. Georgia Institute of Technology: Atlanta, Georgia.
  • Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M.M., Ismail,A.F., and Matsuura, T. (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci., 39: 817–861.
  • Rocha, J. and Lin, Z. (2005) Microporous mixed octahedral-pentahedral-tetrahedral framework silicates. Rev. Miner. Geochem., 57: 173–201.
  • Veltri, M., Vuono, D., De Luca, P., Nagy, J.B., and Nastro, A. (2006) Typical data of a new microporous material obtained from gels with titanium and silicon. J. Therm. Anal. Calorim., 84: 247–252.
  • Roberts, M.A., Sankar, G., Thomas, J.M., Jones, R.H., Du, H., Chen, J., Pang, W., and Xu, R. (1996) Synthesis and structure of a layered titanosilicate catalyst with five-coordinate titanium. Nature. 381: 401–404.
  • Choi, J. and Tsapatsis, M. (2010) MCM-22/silica selective flake nanocomposite membranes for hydrogen separations. J. Am. Chem. Soc., 132: 448–449.
  • Jeong, H.-K., Nair, S., Vogt, T., Dickinson, L.C., and Tsapatsis, M. (2003) A highly crystalline layered silicate with three-dimensionally microporous layers. Nat. Mater., 2: 53–58.
  • Wang, J.-H., Wei, Q., Cheng, J-W., He, H., Yang, B.-F., and Yang, G.-Y. (2015) Na2B10O17(middle dot)H2: A three-dimensional open-framework layered borate co-templated by inorganic cations and organic amines. Chem Commun. 51: 5066–5068.
  • Choi, S., Coronas, J., Sheffel, J.A., Jordan, E., Oh, W., Nair, S., Shantz, D.F., and Tsapatsis, M. (2008) Layered silicate by proton exhcange and swelling of AMH-3. Micropor. Mesopor. Mater., 115: 75–84.
  • Choi, S., Coronas, J., Lai, Z., Yust, D., Onorato, F., and Tsapaitsis, M. (2008) Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes. J. Membrane Sci., 316: 145–152.
  • Mushardt, H., Brinkmann, T., Shishatskiy, S., and Wind, J. (2012) Preparation and characterization of mixed-matrix-membranes for the separation of higher hydrocarbons from methane. Procedia Eng., 44: 1988–1990.
  • Jia, M.-D., Pleinemann, K.-V., and Behling, R.-D. (1992) Preparation and characterization of thin-film zeolite–PDMS composite membranes. J. Membrane Sci., 73: 119–128.
  • Wahab, M.F.A., Rahim, R.A., and Ismail, A.F. (2004) Latest development of mixed matrix membrane using glassy polymer as continuous phase for gas separation. presented in Regional Symposium on Membrane Science and Technology, Johor, Malaysia, 21–25 April 2004.
  • Chung, T.-S., Jiang, L.Y., Li, Y., and Kulprathipanja, S. (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci., 32: 483–507.
  • Gür, T.M. (1994) Permselectivity of zeolite filled polysulfone gas separation membranes. J. Membrane Sci., 93: 283–289.
  • Woo, M. (2007) Polymer/molecular Sieve Composite Membranes for Gas and Vapor Separations. PhD thesis. University of Massachusetts: Amherst, Massachusetts.
  • Hassanajili, S., Masoudi, E., Karimi, G., and Khademi, M. (2013) Mixed matrix membranes based on polyetherurethane and polyesterurethane containing silica nanoparticles for separation of CO2/CH4 gases. Sep. Purif. Technol., 116: 1–12.
  • Cao, C., Wang, R., Chung, T.S., and Liu, Y. (2002) Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO2/CH4 separation. J. Membrane Sci., 209: 309–319.
  • Kim, K.-J., Park, S.H., So, W-W., Ahn, D.-J., and Moon, S-J. (2003) CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. J. Membrane Sci., 211: 41–49.
  • Tena, A., Fernandez, L., Sanchez, M., Palacio, L., Lozano, A.E., Hernandez, A., and Pradanos, P. (2010) Mixed matrix membranes of 6FDA-6FpDA with surface functionalized γ-alumina particles. An analysis of the improvement of permselectivity for several gas pairs. Chem. Eng. Sci., 65: 2227–2235.
  • Nafisi, V. and Hagg, M.-B. (2014) Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer. ACS Appl. Mater. Interf., 6: 15643–15652.
  • Velioğlu, S., Ahunbay, M.G., and Tantekin-Ersolmaz, S.B. (2012) Investigation of CO2-induced plasticization in fluorinated polyimide membranes via molecular simulation. J. Membrane Sci., 417–418:217–227.
  • Chen, X.Y., Vinh-Thang, H., Rodrigue, D., and Kaliaguine, S. (2012) Amine-functionalized MIL-53 metal–organic framework in polyimide mixed matrix membranes for CO2/CH4 separation. Ind. Eng. Chem. Res., 51: 6895–6906.
  • Chen, X.Y., Nik, O.G., Rodrigue, D., and Kaliaguine, S. (2012) Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for CO2/CH4 separation. Polymer, 53: 3269–3280.
  • Ranjbaran, F., Omidkhah, M.R., and Ebadi Amooghin, A. (2015) The novel Elvaloy4170/functionalized multi-walled carbon nanotubes mixed matrix membranes: Fabrication, characterization and gas separation study. J. Taiwan Inst. Chem. Eng., 49: 220–228.
  • Xie, X.-L., Mai, Y.-W., and Zhou, X.-P. (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng., R., 49: 89–112.
  • Yong, H.H., Park, H.C., Kang, Y.S., Won, J., and Kim, W.N. (2001) Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. J. Membrane Sci., 188: 151–163.
  • Husain, S. and Koros, W.J. (2007) Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. J Membrane Sci. 288: 195–207.
  • Rafiq, S., Man, Z., Maulud, A. Muhammad, N., and Maitra, S. (2012) Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes. Sep. Purif. Technol., 90: 162–172.
  • Nik, O.G., Chen, X.Y., and Kaliaguine, S. (2011) Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membrane Sci., 379: 468–478.
  • Nik, O.G., Chen, X.Y., and Kaliaguine, S. (2012) Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membrane Sci., 413–414:48–61.
  • Mergen, G. (2003) Gas permeation properties of poly(arylene ether ketone) and its mixed matrix membranes with polypyrrole. PhD thesis. The Middle East Technical University: Ankara, Turkey.
  • Bakhtiari, O. and Sadeghi, N. (2014) Formed voids around the filler particles impact on the mixed matrix membranes’ gas permeabilities. Int. J. Chem. Eng. Appl., 5: 198–203.
  • Widjojo, N., Li, Y. Jiang, L., and Chung, T.S. (2012) Recent progress and challenges on mixed matrix membranes in both material and configuration aspects for gas separation. In Advanced Materials for Membrane Preparation, 1st ed., in Buonomenna, M.G. and Golemme, G., ed. Bentham Science Publishers: Dubai, United Arab Emirates.
  • Noble, R.D. (2011) Perspectives on mixed matrix membranes. J. Membrane Sci., 378: 393–397.
  • Wiryoatmojo, A.S. (2010) Development of mixed membranes for separation of CO2 from CH4. MSc thesis. Universiti Teknologi Petronas: Malaysia.
  • Li, Y., Chung, T.S., Cao, C., and Kulprathipanja, S. (2005) The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite: A mixed matrix membrane. J. Membrane Sci., 260: 45–55.
  • Vankelecom, I.F.J., Merckx, E., Luts, M., and Uytterhoeven, J.B. (1995) Incorporation of zeolites in polyimide membranes. J. Phys. Chem., 99: 13187–13192.
  • Ismail, A.F. and Kusworo, T.D. (2014) Studies on gas separation behaviour of poymer blending PI/PES hybrid mixed membrane: Effect of polymer concentration and zeolite loading. Int. J. Sci. Eng., 6: 144–148.
  • Souza, V.C. and Quadri, M.G.N. (2013) Organic-inorganic hybrid membranes in separation processes: A 10-year review. Braz. J. Chem. Eng., 30: 683–700.
  • Liu, J. (2010) Development of next generation mixed matrix hollow fiber membranes for butane isomer separation. PhD dissertation. Georgia Institute of Technology: Atlanta, Georgia.
  • Moore, T.T., Mahajan, R., Vu, D.Q., and Koros, W.J. (2004) Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE J., 50: 311–321.
  • Mahajan, R. and Koros,W.J. (2002) Mixed matrix membrane materials with glassy polymers. Part 2. Polym. Eng. Sci., 42: 1432–1441.
  • Koros, W.J., Vu, D.Q., Mahajan, R., and Miller, S.J. (2003) Gas separations using mixed matrix membranes. U.S. Patent US 6503295 B1, Jan. 7, 2013.
  • Hillock, A.M.W., Miller, S.J., and Koros, W.J. (2008) Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification. J. Membrane Sci., 314: 193–199.
  • Bastani, D., Esmaeili, N., and Asadollahi, M. (2013) Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Ind. Eng. Chem. Res., 19: 375–393.
  • Oral, E.E. (2011) Effect of operating parameters on perforamnce of additive/zeolite/polymer mixed matrix membranes. PhD thesis. Middle East Technical University: Ankara, Turkey.
  • Bakhtiari, O., Samira, M., Tayabeh, K., and Toraj, M. (2011) Preparation, characterization and gas permeation of polyimide mixed matrix membranes. J. Membr. Sci. Technol., 1: 1–8.
  • Mahajan, R., Burns, R., Schaeffer, M., and Koros, W.J. (2002) Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci., 86: 881–890.
  • Lydon, M.E., Unocic, K.A., Bae, T.-H., Jones, C.W., and Nair, S. (2012) Structure–property relationships of inorganically surface-modified zeolite molecular sieves for nanocomposite membrane fabrication. J. Phys. Chem. C, 116: 9636–9645.
  • Li, Y., Guan, H-M., Chung, T.S., and Kulprathipnja, S. (2006) Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes. J. Membr. Sci., 275: 17–28.
  • Miyatake, K., Ohama, O., Kawara, Y., and Urano, A. (2007) Study on analysis method for reaction of silane coupling agent on inorganic materials. SEI Tech Rev., 65: 21–24.
  • Faucheu, J., Gauthier, C., Chazeau, L., Cavaillé, J.-Y., Mellon, V., and Lami, E.B. (2010) Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: Short review and recent advances. Polymer. 51: 6–17.
  • Vankelecom, I.F.J., Van den broeck, S., Merckx, E., Geerts, H., Grobert, P., and Uytterhoeven, J.B. (1996) Silylation to improve incorporation of zeolites in polyimide films. J. Phys. Chem., 100: 3753–3758.
  • Hudiono, Y.C., Carlisle, T. K., Bara, J. E., and Zhang, Y. (2010) A three-component mixed-matrix mmebrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials. J. Membr. Sci., 350: 117–123.
  • Loloei, M., Omidkhah, M., Moghadassi, A., and Amooghin, A.E. (2015) Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. Int. J. Greenhouse Gas Contr., 39: 225–235.
  • Keser, N. (2012) Production and performance evaluation of ZIF-8 based binary and ternary mixed amtrix gas separation membranes. PhD thesis. Middle East Technical University: Ankara, Turkey.
  • Thompson, J.A., Chapman, K.W., Koros, W.J., Jones, C.W., and Nair, S. (2012) Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Micropor. Mesopor. Mater., 158: 292–299.
  • Bhattacharya, A. and Misra, B.N. (2004) Grafting: A versatile means to modify polymers: Techniques, factors and applications. Prog. Polym. Sci., 29: 767–814.
  • Khan, M.M., Filiz, V., Bengston, G., and Shishatskiv, S. (2013) Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). J. Membrane Sci., 436: 109–120.
  • Khan, M.M., Filiz, V., Bengston, G. Shishatskiv, S., Rahman, M., and Abetz, V. (2012) Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. Nanoscale Res. Lett., 7: 504–515.
  • Vinh-Thang, H. and Kaliaguine, S. (2013) Predictive models for mixed-matrix membrane performance: A review. Chem Rev., 113: 4980–5028.
  • Tantekin-Ersolmaz, Ş.B., Atalay-Oral, C., Tatlier, M., Erdem-Senatalar. A., Schoeman, B., and Sterte, J. (2000) Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes. J. Membr. Sci., 175: 285–288.
  • Miller, S.G. (2008) Effects of nanopartice and matrix interface on nanocomposite properties. PhD thesis. University of Akron: Akron, Ohio.
  • Nordin, N.A.H., Ismail, A.F., Mustafa, A. Racha, S.M., and Matsuura, T. (2014) The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane. RSC Adv., 4: 52530–52541.
  • Ayas, I. (2014) Effect of particle size of ZIF-8 on the separation performance of ZIF-8/PNA/PES membranes. MSc thesis. Middle East Technical University: Ankara, Turkey.
  • Huang, Z.I., Li, Y., Wen, R., Teoh, M.M., and Kulprathipanja, S. (2006) Enhanced gas separation properties by using nanostructured PES-zeolite 4A mixed matrix membranes. J. Appl. Polym. Sci., 101: 3800–3805.
  • Zornoza, B., Irusta, S., Tellez, C., and Coronas, J. (2009) Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. Langmuir, 25: 5903–5909.
  • Yaghi, O.M., O’Keefee, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., and Kim, J. (2003) Reticular synthesis and the design of new materials. Nature, 423: 705–714.
  • Ferey, G. (2008) Hybrid porous solids: Past, present, future. Chem. Soc. Rev., 37: 191–214.
  • Kitagawa, S., Kitaura, R., and Noro, S.-I. (2004) Functional porous coordination polymers. Angew Chem. Int. Ed., 43: 2334–2375.
  • Kim, S., and Marand, E. (2008) High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Micropor. Mesopor. Mater., 114: 129–136.
  • Shahid, S. (2015) Polymer-metal organic frameworks (MOFs) mixed matrix membrane for gas separation applications. PhD thesis. University of Twente: Netherlands.
  • Merkel, T.C., Freeman, B.D., Spontak, R.J., He., Z., and Pinnau, I. (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science, 296: 519–522.
  • Levich, V.G. and Krylov, V.S. (1969) Surface-tension-drive phenomena. Annu. Rev. Fluid Mech., 1: 293–316.
  • Dorosti, F., Omidkhah, M.R., Pedram, M.Z., and Moghadam, F. (2011) Fabrication and characterization of polysulfone/polyimide–zeolite mixed matrix membrane for gas separation. Chem. Eng. J., 171: 1469–1476.
  • Xing, R. and Ho, W.S.W. (2009) Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. J. Taiwan Inst. Chem. Eng., 40: 654–662.
  • Sen, D. (2008) Polycarbonate based zeolite 4A filled mixed matrix membranes: preparation, characterization and gas separation performances. PhD thesis. Middle East Technical University: Ankara, Turkey.
  • Chung, T.S., Chan, S.S., Wang, R., Lu, Z., and He. C. (2003) Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. J. Membrane Sci., 211: 91–99.
  • Süer, M.G., Baç, N., and Yilmaz, L. (1994) Gas permeation characteristics of polymer-zeolite mixed matrix membranes. J. Membrane Sci., 91: 77–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.