1,307
Views
48
CrossRef citations to date
0
Altmetric
Reviews

Occurrence and Removal of Engineered Nanoparticles in Drinking Water Treatment and Wastewater Treatment Processes

, , , , , & show all
Pages 255-272 | Received 03 Sep 2016, Accepted 07 Nov 2016, Published online: 28 Dec 2016

REFERENCES

  • Ema, M., Kobayashi, N., Naya, M., Hanai, S., and Nakanishi, J. (2010) Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod. Toxicol., 30: 343–352.
  • Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., and Stark, W.J. (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 40: 4374–4381.
  • Jeng, H.A. and Swanson, J. (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A, 41: 2699–2711.
  • Gottschalk, F., Sonderer, T., Scholz, R.W., and Nowack, B. (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol., 43: 9216–9222.
  • Nowack, B. and Bucheli, T.D. (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut., 150: 5–22.
  • Brar, S.K., Verma, M., Tyagi, R., and Surampalli, R. (2010) Engineered nanoparticles in wastewater and wastewater sludge–Evidence and impacts. Waste Manage., 30: 504–520.
  • Kasprzyk-Hordern, B., Dinsdale, R.M., and Guwy, A.J. (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res., 42: 3498–3518.
  • Baalousha, M., Yang, Y., Vance, M.E., Colman, B.P., McNeal, S., Xu, J., Blaszczak, J., Steele, M., Bernhardt, E., and Hochella, M.F. (2016) Outdoor urban nanomaterials: the emergence of a new, integrated, and critical field of study. Sci. Total Environ., 557: 740–753.
  • Kiser, M., Westerhoff, P., Benn, T., Wang, Y., Perez-Rivera, J., and Hristovski, K. (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol., 43: 6757–6763.
  • Kägi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., and Burkhardt, M. (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut., 156: 233–239.
  • Aitken, R., Chaudhry, M., Boxall, A., and Hull, M. (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup. Med-C., 56: 300–306.
  • Blaser, S.A., Scheringer, M., MacLeod, M., and Hungerbühler, K. (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci. Total Environ., 390: 396–409.
  • Baalousha, M., Nur, Y., Römer, I., Tejamaya, M., and Lead, J. (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci. Total Environ., 454: 119–131.
  • Fiksdal, L. and Leiknes, T. (2006) The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. J. Membr. Sci., 279: 364–371.
  • Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., and Crittenden, J.C. (2008) Stability of commercial metal oxide nanoparticles in water. Water Res., 42: 2204–2212.
  • Baalousha, M. (2016) Effect of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics. In 10th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials. Golden, CO.
  • Chang, M., Lee, D., and Lai, J. (2007) Nanoparticles in wastewater from a science-based industrial park-Coagulation using polyaluminum chloride. J. Environ. Manage., 85: 1009–1014.
  • Limbach, L.K., Bereiter, R., Müller, E., Krebs, R., Gälli, R., and Stark, W.J. (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol., 42: 5828–5833.
  • Ju-Nam, Y. and Lead, J.R. (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ., 400: 396–414.
  • Boxall, A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B., and Watts, C. (2007) Current and Predicted Environmental Exposure to Engineered Nanoparticles; Central Science Laboratory: York.
  • Piccinno, F., Gottschalk, F., Seeger, S., and Nowack, B. (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res., 14: 1–11.
  • Troester, M., Brauch, H.-J., and Hofmann, T. (2016) Vulnerability of drinking water supplies to engineered nanoparticles. Water Res., 96: 255–279.
  • Tiede, K., Boxall, A.B., Tear, S.P., Lewis, J., David, H., and Hassellöv, M. (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food. Addit. Contam., 25: 795–821.
  • Schmid, K., Danuser, B., and Riediker, M. (2010) Nanoparticle usage and protection measures in the manufacturing industry-a representative survey. J. Occup. Environ. Hyg., 7: 224–232.
  • Hendren, C.O., Mesnard, X., Dröge, J., and Wiesner, M.R. (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol., 45: 2562–2569.
  • Sun, T.Y., Gottschalk, F., Hungerbühler, K., and Nowack, B. (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Pollut., 185: 69–76.
  • Hu, L. and Cui, Y. (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci., 5: 6423–6435.
  • Mihranyan, A., Ferraz, N., and Strømme, M. (2012) Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci., 57: 875–910.
  • Nowack, B., Ranville, J.F., Diamond, S., Gallego‐Urrea, J.A., Metcalfe, C., Rose, J., Horne, N., Koelmans, A.A., and Klaine, S.J. (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem., 31: 50–59.
  • Savage, N., and Diallo, M.S. (2005) Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res., 7: 331–342.
  • Grieger, K.D., Fjordbøge, A., Hartmann, N.B., Eriksson, E., Bjerg, P.L., and Baun, A. (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J. Contam. Hydrol., 118: 165–183.
  • Moniruzzaman, M. and Winey, K.I. (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39: 5194–5205.
  • Mauter, M.S. and Elimelech, M. (2008) Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42: 5843–5859.
  • Kah, M. and Hofmann, T. (2014) Nanopesticide research: current trends and future priorities. Environ. Int., 63: 224–235.
  • Kah, M., Beulke, S., Tiede, K., and Hofmann, T. (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit. Rev. Env. Sci. Technol., 43: 1823–1867.
  • Kaegi, R., Wagner, T., Hetzer, B., Sinnet, B., Tzvetkov, G., and Boller, M. (2008) Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD. Water Res., 42: 2778–2786.
  • Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., and Burkhardt, M. (2010) Release of silver nanoparticles from outdoor facades. Environ. Pollut., 158: 2900–2905.
  • Benn, T.M. and Westerhoff, P. (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol., 42: 4133–4139.
  • Farkas, J., Peter, H., Christian, P., Urrea, J.A.G., Hassellöv, M., Tuoriniemi, J., Gustafsson, S., Olsson, E., Hylland, K., and Thomas, K.V. (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ. Int., 37: 1057–1062.
  • Hsu, L.-Y. and Chein, H.-M. (2006) Evaluation of nanoparticle emission for TiO2 nanopowder coating materials. J. Nanopart. Res., 9: 157–163.
  • Mitrano, D.M., Motellier, S., Clavaguera, S., and Nowack, B. (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int., 77: 132–147.
  • Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., and Siegrist, H. (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol., 45: 3902–3908.
  • Li, L., Stoiber, M., Wimmer, A., Xu, Z., Lindenblatt, C., Helmreich, B., and Schuster, M. (2016) To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver based nanoparticles in surface waters? Environ. Sci. Technol., 50: 6327–6333.
  • Colvin, V.L. (2003) The potential environmental impact of engineered nanomaterials. Nat. Biotechnol., 21: 1166–1170.
  • Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D., and Biswas, P. (2006) Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol., 40: 4336–4345.
  • Matsunaga, T., and Sakaguchi, T. (2000) Molecular mechanism of magnet formation in bacteria. J. Biosci. Bioeng., 90: 1–13.
  • Gilbert, B. and Banfield, J.F. (2005) Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. Rev. Miner. Geochem., 59: 109–155.
  • Becker, L. (1994) Fullerenes in the 1.85-Billion-Year-Old sudbury impact structure. Science, 265: 1644–1644.
  • Heymann, D., Wolbach, W., Chibante, L., Brooks, R., and Smalley, R. (1994) Search for extractable fullerenes in clays from the Cretaceous/Tertiary boundary of the Woodside Creek and Flaxbourne River sites, New Zealand. Geochim. Cosmochim. Acta, 58: 3531–3534.
  • Chijiwa, T., Arai, T., Sugai, T., Shinohara, H., Kumazawa, M., Takano, M., and Kawakami, S.i. (1999) Fullerenes found in the Permo‐Triassic mass extinction period. Geophys. Res. Lett., 26: 767–770.
  • Heymann, D., Jenneskens, L., Jehlička, J., Koper, C., and Vlietstra, E. (2003) Terrestrial and extraterrestrial fullerenes. Fullerenes Nanotubes Carbon Nanostruct., 11: 333–370.
  • Utsunomiya, S., Jensen, K.A., Keeler, G.J., and Ewing, R.C. (2002) Uraninite and fullerene in atmospheric particulates. Environ. Sci. Technol., 36: 4943–4947.
  • Esquivel, E. and Murr, L. (2004) A TEM analysis of nanoparticulates in a polar ice core. Mater. Charact., 52: 15–25.
  • Murr, L., Esquivel, E., Bang, J., De La Rosa, G., and Gardea-Torresdey, J. (2004) Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Res., 38: 4282–4296.
  • Velasco-Santos, C., Martı́, A., Consultchi, A., and Castaño, V. (2003) Naturally produced carbon nanotubes. Chem. Phys. Lett., 373: 272–276.
  • Boxall, A.B., Tiede, K., and Chaudhry, Q. (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine., 2: 919–927.
  • Yang, S.-T., Wang, H., Wang, Y., Wang, Y., Nie, H., and Liu, Y. (2011) Removal of carbon nanotubes from aqueous environment with filter paper. Chemosphere, 82: 621–626.
  • Weinberg, H., Galyean, A., and Leopold, M. (2011) Evaluating engineered nanoparticles in natural waters. TrAC-Trend. Anal. Chem., 30: 72–83.
  • Bourlinos, A., Georgakilas, V., Boukos, N., Dallas, P., Trapalis, C., and Giannelis, E. (2007) Silicone-functionalized carbon nanotubes for the production of new carbon-based fluids. Carbon, 45: 1583–1585.
  • Gondikas, A.P., Kammer, F.v.d., Reed, R.B., Wagner, S., Ranville, J.F., and Hofmann, T. (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environ. Sci. Technol., 48: 5415–5422.
  • Klaine, S.J., Koelmans, A.A., Horne, N., Carley, S., Handy, R.D., Kapustka, L., Nowack, B., and von der Kammer, F. (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem., 31: 3–14.
  • Lowry, G.V., Gregory, K.B., Apte, S.C., and Lead, J.R. (2012) Transformations of nanomaterials in the environment. Environ. Sci. Technol., 46: 6893–6899.
  • Kahru, A., and Dubourguier, H.-C. (2010) From ecotoxicology to nanoecotoxicology. Toxicology, 269: 105–119.
  • Contado, C. (2015) Nanomaterials in consumer products: a challenging analytical problem. Front. Chem., 3: 48–58.
  • Liu, F.-K. (2007) SEC characterization of Au nanoparticles prepared through seed-assisted synthesis. Chromatographia, 66: 791–796.
  • Duesberg, G., Burghard, M., Muster, J., and Philipp, G. (1998) Separation of carbon nanotubes by size exclusion chromatography. Chem. Commun., 435–436.
  • Niyogi, S., Hu, H., Hamon, M., Bhowmik, P., Zhao, B., Rozenzhak, S., Chen, J., Itkis, M., Meier, M., and Haddon, R. (2001) Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). J. Am. Chem. Soc., 123: 733–734.
  • Zhao, B., Hu, H., Niyogi, S., Itkis, M.E., Hamon, M.A., Bhowmik, P., Meier, M.S., and Haddon, R.C. (2001) Chromatographic purification and properties of soluble single-walled carbon nanotubes. J. Am. Chem. Soc., 123: 11673–11677.
  • Shiundu, P.M., Munguti, S.M., and Williams, S.K.R. (2003) Retention behavior of metal particle dispersions in aqueous and nonaqueous carriers in thermal field-flow fractionation. J. Chromatogr. A, 983: 163–176.
  • Baalousha, M., and Lead, J. (2007) Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy. Environ. Sci. Technol., 41: 1111–1117.
  • Gimbert, L.J., Hamon, R.E., Casey, P.S., and Worsfold, P.J. (2007) Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation. Environ. Chem., 4: 8–10.
  • Liu, F.-K. (2009) Analysis and applications of nanoparticles in the separation sciences: a case of gold nanoparticles. J. Chromatogr. A, 1216: 9034–9047.
  • Lo, C.K., Paau, M.C., Xiao, D., and Choi, M.M. (2008) Application of capillary zone electrophoresis for separation of water‐soluble gold monolayer‐protected clusters. Electrophoresis, 29: 2330–2339.
  • Lin, K.-H., Chu, T.-C., and Liu, F.-K. (2007) On-line enhancement and separation of nanoparticles using capillary electrophoresis. J. Chromatogr. A, 1161: 314–321.
  • Lee, S., Bi, X., Reed, R.B., Ranville, J.F., Herckes, P., and Westerhoff, P. (2014) Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol., 48: 10291–10300.
  • Lu, D., Liu, Q., Zhang, T., Cai, Y., Yin, Y., and Jiang, G. (2016) Stable silver isotope fractionation in the natural transformation process of silver nanoparticles. Nat. Nanotechnol., 11: 682–686.
  • Chalew, T.E.A., Ajmani, G.S., Huang, H., and Schwab, K.J. (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ. Health Persp., 121: 1161.
  • Fortner, J., Lyon, D., Sayes, C., Boyd, A., Falkner, J., Hotze, E., Alemany, L., Tao, Y., Guo, W., and Ausman, K. (2005) C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol., 39: 4307–4316.
  • Kozlovski, V., Brusov, V., Sulimenkov, I., Pikhtelev, A., and Dodonov, A. (2004) Novel experimental arrangement developed for direct fullerene analysis by electrospray time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom., 18: 780–786.
  • Heymann, D., Chibante, L.F., and Smalley, R.E. (1995) Determination of C60 and C70 fullerenes in geologic materials by high-performance liquid chromatography. J. Chromatogr. A, 689: 157–163.
  • Murr, L., Soto, K., Esquivel, E., Bang, J., Guerrero, P., Lopez, D., and Ramirez, D. (2004) Carbon nanotubes and other fullerene-related nanocrystals in the environment: a TEM study. Jom-US, 56: 28–31.
  • Sano, M., Okamura, J., and Shinkai, S. (2001) Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze-Hardy rule. Langmuir, 17: 7172–7173.
  • Jiang, L., Gao, L., and Sun, J. (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interf. Sci., 260: 89–94.
  • Liu, A., Honma, I., Ichihara, M., and Zhou, H. (2006) Poly (acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties. Nanotechnology, 17: 2845.
  • Fan, W., Jiang, X., Yang, W., Geng, Z., Huo, M., Liu, Z., and Zhou, H. (2015) Transport of graphene oxide in saturated porous media: effect of cation composition in mixed Na–Ca electrolyte systems. Sci. Total Environ., 511: 509–515.
  • Lin, Y.-H., Tseng, H.-H., Wey, M.-Y., and Lin, M.-D. (2010) Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci. Total Environ., 408: 2260–2267.
  • Tian, Y., Gao, B., Morales, V.L., Wang, Y., and Wu, L. (2012) Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media. J. Hazard. Mater., 239: 333–339.
  • Cornelis, G., Pang, L., Doolette, C., Kirby, J.K., and McLaughlin, M.J. (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci. Total Environ., 463: 120–130.
  • Dunphy Guzman, K.A., Finnegan, M.P., and Banfield, J.F. (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol., 40: 7688–7693.
  • Godinez, I.G. and Darnault, C.J. (2011) Aggregation and transport of nano-TiO 2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res., 45: 839–851.
  • Hydutsky, B.W., Mack, E.J., Beckerman, B.B., Skluzacek, J.M., and Mallouk, T.E. (2007) Optimization of nano-and microiron transport through sand columns using polyelectrolyte mixtures. Environ. Sci. Technol., 41: 6418–6424.
  • Di Pasqua, A.J., Sharma, K.K., Shi, Y.-L., Toms, B.B., Ouellette, W., Dabrowiak, J.C., and Asefa, T. (2008) Cytotoxicity of mesoporous silica nanomaterials. J. Inorg. Biochem., 102: 1416–1423.
  • Jaisi, D.P., Saleh, N.B., Blake, R.E., and Elimelech, M. (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ. Sci. Technol., 42: 8317–8323.
  • Liang, Y., Bradford, S.A., Simunek, J., Vereecken, H., and Klumpp, E. (2013) Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Res., 47: 2572–2582.
  • Latkoczy, C., Kägi, R., Fierz, M., Ritzmann, M., Günther, D., and Boller, M. (2010) Development of a mobile fast-screening laser-induced breakdown detection (LIBD) system for field-based measurements of nanometre sized particles in aqueous solutions. J. Environ. Monitor., 12: 1422–1429.
  • Amendola, V., and Meneghetti, M. (2009) Size evaluation of gold nanoparticles by UV−vis spectroscopy. J. Phys. Chem. C, 113: 4277–4285.
  • Haberstroh, P.R., Brandes, J.A., Gélinas, Y., Dickens, A.F., Wirick, S., and Cody, G. (2006) Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon X-ray spectromicroscopy. Geochim. Cosmochim. Acta, 70: 1483–1494.
  • Tong, T., Hill, A.N., Alsina, M.A., Wu, J., Shang, K.Y., Kelly, J.J., Gray, K.A., and Gaillard, J.-F.o. (2014) Spectroscopic characterization of TiO2 polymorphs in wastewater treatment and sediment samples. Environ. Sci. Technol. Lett., 2: 12–18.
  • Mattison, N.T., O’Carroll, D.M., Kerry Rowe, R., and Petersen, E.J. (2011) Impact of porous media grain size on the transport of multi-walled carbon nanotubes. Environ. Sci. Technol., 45: 9765–9775.
  • Pelley, A.J. and Tufenkji, N. (2008) Effect of particle size and natural organic matter on the migration of nano-and microscale latex particles in saturated porous media. J. Hazard. Mater., 321: 74–83.
  • Rauch-Williams, T., Hoppe-Jones, C., and Drewes, J. (2010) The role of organic matter in the removal of emerging trace organic chemicals during managed aquifer recharge. Water Res., 44: 449–460.
  • Eckert, P., and Irmscher, R. (2006) Over 130 years of experience with riverbank filtration in Düsseldorf, Germany. J. Water Supply Res. Technol. AQUA, 55: 283–291.
  • Liang, Z., Das, A., and Hu, Z. (2010) Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res., 44: 5432–5438.
  • Kim, H.-C., Noh, J.H., Chae, S.-R., Choi, J., Lee, Y., and Maeng, S.K. (2015) A multi-parametric approach assessing microbial viability and organic matter characteristics during managed aquifer recharge. Sci. Total Environ., 524: 290–299.
  • Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., and Tchobanoglous, G. (2005) Advanced oxidation. In MWH’s Water Treatment: Principles and Design; John Wiley & Sons, NJ, USA, 1415–1484.
  • Holbrook, R.D., Kline, C.N., and Filliben, J.J. (2010) Impact of source water quality on multiwall carbon nanotube coagulation. Environ. Sci. Technol., 44: 1386–1391.
  • Elzey, S. and Grassian, V.H. (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J. Nanopart. Res., 12: 1945–1958.
  • Hyung, H. and Kim, J.-H. (2009) Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Res., 43: 2463–2470.
  • O’melia, C., Becker, W., and Au, K.-K. (1999) Removal of humic substances by coagulation. Water Sci. Technol., 40: 47–54.
  • Shin, J., Spinette, R., and O’melia, C. (2008) Stoichiometry of coagulation revisited. Environ. Sci. Technol., 42: 2582–2589.
  • Lawler, D.F., Mikelonis, A.M., Kim, I., Lau, B.L., and Youn, S. (2013) Silver nanoparticle removal from drinking water: flocculation/sedimentation or filtration? Water Sci. Technol.: Water Supply, 13: 1181–1187.
  • Westerhoff, P., Zhang, Y., Crittenden, J., and Chen, Y. (2008) Properties of commercial nanoparticles that affect their removal during water treatment. In Nanoscience and Nanotechnology: Environmental and Health Impacts; ed.; Grassian, V.H., John Wiley and Sons: Hoboken, NJ, USA, 71–90.
  • Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., and Tufenkji, N. (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol., 44: 6532–6549.
  • Baalousha, M. (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci. Total Environ., 407: 2093–2101.
  • Lin, D. and Xing, B. (2008) Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ. Sci. Technol., 42: 5917–5923.
  • Lin, D., Liu, N., Yang, K., Zhu, L., Xu, Y., and Xing, B. (2009) The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon, 47: 2875–2882.
  • Zhang, Y., Chen, Y., Westerhoff, P., and Crittenden, J.C. (2007) Stability and removal of water soluble CdTe quantum dots in water. Environ. Sci. Technol., 42: 321–325.
  • USEPA (1999) Enhanced Coagulation and Enhanced Precipitative Softening Guidance Manual. In Disinfection byproduct rule overview; EPA 815-R-99-012.
  • Li, Z., Hassan, A.A., Sahle-Demessie, E., and Sorial, G.A. (2013) Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Res., 47: 6457–6466.
  • Petrusevski, B., Van Breemen, A., and Alaerts, G. (1995) Optimisation of coagulation conditions for direct filtration of impounded surface water. J. Water Supply Res. Technol., 44: 93–102.
  • Reckhow, D.A. and Singer, P.C. (1984) The removal of organic halide precursors by preozonation and alum coagulation. J. Am. Water Works Assoc., 76: 151–157.
  • Chandrakanth, M.S. and Amy, G.L. (1996) Effects of ozone on the colloidal stability and aggregation of particles coated with natural organic matter. Environ. Sci. Technol., 30: 431–443.
  • Cataldo, F. and Angelini, G. (2013) A green synthesis of colloidal silver nanoparticles and their reaction with ozone. Eur. Chem. Bull., 2: 700–705.
  • Morozov, P., Abkhalimov, E., Chalykh, A., Pisarev, S., and Ershov, B. (2011) Interaction of silver nanoparticles with ozone in aqueous solution. Colloid J., 73: 248–252.
  • Puckett, S., Heuser, J., Keith, J., Spendel, W., and Pacey, G. (2005) Interaction of ozone with gold nanoparticles. Talanta, 66: 1242–1246.
  • Weisman, R.B., Heymann, D., and Bachilo, S.M. (2001) Synthesis and characterization of the “missing” oxide of C60:[5, 6]-open C60O. J. Am. Chem. Soc., 123: 9720–9721.
  • Heymann, D., Bachilo, S.M., Weisman, R.B., Cataldo, F., Fokkens, R.H., Nibbering, N.M., Vis, R.D., and Chibante, L.F. (2000) C60O3, a fullerene ozonide: synthesis and dissociation to C60O and O2. J. Am. Chem. Soc., 122: 11473–11479.
  • Simmons, J., Nichols, B., Baker, S., Marcus, M.S., Castellini, O., Lee, C.-S., Hamers, R., and Eriksson, M. (2006) Effect of ozone oxidation on single-walled carbon nanotubes. J. Phys. Chem. B, 110: 7113–7118.
  • Fortner, J.D., Kim, D.-I., Boyd, A.M., Falkner, J.C., Moran, S., Colvin, V.L., Hughes, J.B., and Kim, J.-H. (2007) Reaction of water-stable C60 aggregates with ozone. Environ. Sci. Technol., 41: 7497–7502.
  • Lipp, P. and Baldauf, G. (2008) Stand der Membrantechnik in der Trinkwasseraufbereitung in Deutschland. Energie/wasser-praxis, 4: 60–64.
  • Huang, H., Schwab, K., and Jacangelo, J.G. (2009) Pretreatment for low pressure membranes in water treatment: a review. Environ. Sci. Technol., 43: 3011–3019.
  • Pickering, K.D. (2005) Photochemistry and Environmental Applications of Water-Soluble Fullerene Compounds. Rice University: Houston, TX.
  • Jassby, D., Chae, S.-R., Hendren, Z., and Wiesner, M. (2010) Membrane filtration of fullerene nanoparticle suspensions: effects of derivatization, pressure, electrolyte species and concentration. J. Colloid Interf. Sci., 346: 296–302.
  • Ladner, D.A., Steele, M., Weir, A., Hristovski, K., and Westerhoff, P. (2012) Functionalized nanoparticle interactions with polymeric membranes. J. Hazard. Mater., 211: 288–295.
  • Springer, F., Laborie, S., and Guigui, C. (2013) Removal of SiO2 nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: investigation of process efficiency, deposit properties and fouling mechanism. Sep. Purif. Technol., 108: 6–14.
  • Surawanvijit, S., Kim, M., and Cohen, Y. (2010) Analysis of membrane filtration efficiency for the removal of metal oxide nanoparticles from aqueous nanoparticle suspension with feed coagulation pretreatment. In Technical Proceedings of the 2010 Clean Technology Conference and Expo; ed.; Nanoscience and Technology Institute, CRC Press, Cambridge, MA, USA.
  • Smith, B., Wepasnick, K., Schrote, K.E., Cho, H.-H., Ball, W.P., and Fairbrother, D.H. (2009) Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure− property relationship. Langmuir, 25: 9767–9776.
  • Gicheva, G., and Yordanov, G. (2013) Removal of citrate-coated silver nanoparticles from aqueous dispersions by using activated carbon. Colloids Surf. A, 431: 51–59.
  • Salih, H.H., Sorial, G.A., Patterson, C.L., Sinha, R., and Krishnan, E.R. (2012) Removal of trichloroethylene by activated carbon in the presence and absence of TiO2 nanoparticles. Water Air Soil Pollut., 223: 2837–2847.
  • Yang, R.T. (2003) Adsorbents: Fundamentals and Applications; John Wiley & Sons, Hoboken, NJ, USA.
  • Wang, P., Shi, Q., Liang, H., Steuerman, D.W., Stucky, G.D., and Keller, A.A. (2008) Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small, 4: 2166–2170.
  • Fabrega, J., Renshaw, J.C., and Lead, J.R. (2009) Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ. Sci. Technol., 43: 9004–9009.
  • Park, H.-J., Kim, H.Y., Cha, S., Ahn, C.H., Roh, J., Park, S., Kim, S., Choi, K., Yi, J., and Kim, Y. (2013) Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere, 92: 524–528.
  • Jarvie, H.P., Al-Obaidi, H., King, S.M., Bowes, M.J., Lawrence, M.J., Drake, A.F., Green, M.A., and Dobson, P.J. (2009) Fate of silica nanoparticles in simulated primary wastewater treatment. Environ. Sci. Technol., 43: 8622–8628.
  • Wang, Y., Westerhoff, P., and Hristovski, K.D. (2012) Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J. Hazard. Mater., 201: 16–22.
  • Liu, J., Pennell, K.G., and Hurt, R.H. (2011) Kinetics and mechanisms of nanosilver oxysulfidation. Environ. Sci. Technol., 45: 7345–7353.
  • Kiser, M.A., Ryu, H., Jang, H., Hristovski, K., and Westerhoff, P. (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res., 44: 4105–4114.
  • Choi, O., Clevenger, T.E., Deng, B., Surampalli, R.Y., Ross, L., and Hu, Z. (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res., 43: 1879–1886.
  • Yang, Y., Zhang, C., and Hu, Z. (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ. Sci. Process. Impacts, 15: 39–48.
  • Yang, Y., Chen, Q., Wall, J.D., and Hu, Z. (2012) Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Res., 46: 1176–1184.
  • Lombi, E., Donner, E., Tavakkoli, E., Turney, T.W., Naidu, R., Miller, B.W., and Scheckel, K.G. (2012) Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol., 46: 9089–9096.
  • Rittmann, B.E., and McCarty, P.L. (2012) Environmental Biotechnology: Principles and Applications; Tata McGraw-Hill Education, India.
  • Shafer, M.M., Overdier, J.T., and Armstong, D.E. (1998) Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent‐receiving streams. Environ. Toxicol. Chem., 17: 630–641.
  • Yang, Y., Wang, Y., Hristovski, K., and Westerhoff, P. (2015) Simultaneous removal of nanosilver and fullerene in sequencing batch reactors for biological wastewater treatment. Chemosphere, 125: 115–121.
  • Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., Hagendorfer, H., Elumelu, M., and Mueller, E. (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res., 47: 3866–3877.
  • Eduok, S., Hendry, C., Ferguson, R., Martin, B., Villa, R., Jefferson, B., and Coulon, F. (2015) Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiol. Ecol., 91: fiv082.
  • Westerhoff, P., Song, G., Hristovski, K., and Kiser, M.A. (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J. Environ. Monitor., 13: 1195–1203.
  • Ganesh, R., Smeraldi, J., Hosseini, T., Khatib, L., Olson, B.H., and Rosso, D. (2010) Evaluation of nanocopper removal and toxicity in municipal wastewaters. Environ. Sci. Technol., 44: 7808–7813.
  • Reijnders, L. (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J. Clean. Prod., 14: 124–133.
  • Lytle, P.E. (1984) Fate and speciation of silver in publicly owned treatment works. Environ. Toxicol. Chem., 3: 21–30.
  • Zaspalis, V., Pagana, A., and Sklari, S. (2007) Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination, 217: 167–180.
  • Mei, X., Wang, Z., Zheng, X., Huang, F., Ma, J., Tang, J., and Wu, Z. (2014) Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles. J. Membr. Sci., 451: 169–176.
  • Song, Y., Heien, M.L., Jimenez, V., Wightman, R.M., and Murray, R.W. (2004) Voltammetric detection of metal nanoparticles separated by liquid chromatography. Anal. Chem., 76: 4911–4919.
  • Krueger, K.M., Al-Somali, A.M., Falkner, J.C., and Colvin, V.L. (2005) Characterization of nanocrystalline CdSe by size exclusion chromatography. Anal. Chem., 77: 3511–3515.
  • Ziegler, K.J., Schmidt, D.J., Rauwald, U., Shah, K.N., Flor, E.L., Hauge, R.H., and Smalley, R.E. (2005) Length-dependent extraction of single-walled carbon nanotubes. Nano Lett., 5: 2355–2359.
  • Bouchard, D., Zhang, W., Powell, T., and Rattanaudompol, U.S. (2012) Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. Environ. Sci. Technol., 46: 4458–4465.
  • Brant, J., Lecoanet, H., and Wiesner, M.R. (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanopart. Res., 7: 545–553.
  • Chen, K.L., and Elimelech, M. (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 22: 10994–11001.
  • Chowdhury, I., Hong, Y., Honda, R.J., and Walker, S.L. (2011) Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. J. Colloid Interf. Sci., 360: 548–555.
  • Espinasse, B., Hotze, E.M., and Wiesner, M.R. (2007) Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method. Environ. Sci. Technol., 41: 7396–7402.
  • Feriancikova, L., and Xu, S. (2012) Deposition and remobilization of graphene oxide within saturated sand packs. J. Hazard. Mater., 235: 194–200.
  • Jaisi, D.P., and Elimelech, M. (2009) Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ. Sci. Technol., 43: 9161–9166.
  • Kasel, D., Bradford, S.A., Šimůnek, J., Heggen, M., Vereecken, H., and Klumpp, E. (2013) Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size. Water Res., 47: 933–944.
  • Kasel, D., Bradford, S.A., Šimůnek, J., Pütz, T., Vereecken, H., and Klumpp, E. (2013) Limited transport of functionalized multi-walled carbon nanotubes in two natural soils. Environ. Pollut., 180: 152–158.
  • Lanphere, J.D., Luth, C.J., and Walker, S.L. (2013) Effects of solution chemistry on the transport of graphene oxide in saturated porous media. Environ. Sci. Technol., 47: 4255–4261.
  • Qi, Z., Zhang, L., and Chen, W. (2014) Transport of graphene oxide nanoparticles in saturated sandy soil. Environ. Sci. Process Impacts, 16: 2268–2277.
  • Sagee, O., Dror, I., and Berkowitz, B. (2012) Transport of silver nanoparticles (AgNPs) in soil. Chemosphere, 88: 670–675.
  • Wang, Y., Kim, J.-H., Baek, J.-B., Miller, G.W., and Pennell, K.D. (2012) Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length. Water Res., 46: 4521–4531.
  • Wang, Y., Li, Y., and Pennell, K.D. (2008) Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ. Toxicol. Chem., 27: 1860–1867.
  • Zhang, L., Hou, L., Wang, L., Kan, A.T., Chen, W., and Tomson, M.B. (2012) Transport of fullerene nanoparticles (n C60) in saturated sand and sandy soil: controlling factors and modeling. Environ. Sci. Technol., 46: 7230–7238.
  • Lecoanet, H.F., Bottero, J.-Y., and Wiesner, M.R. (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol., 38: 5164–5169.
  • Lecoanet, H.F., and Wiesner, M.R. (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ. Sci. Technol., 38: 4377–4382.
  • Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R.D., and Lowry, G.V. (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol., 42: 3349–3355.
  • Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R.D., and Lowry, G.V. (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ. Eng. Sci., 24: 45–57.
  • Cheng, X., Kan, A.T., and Tomson, M.B. (2005) Study of C 60 transport in porous media and the effect of sorbed C 60 on naphthalene transport. J. Mater. Res., 20: 3244–3254.
  • Fang, J., Shan, X.-q., Wen, B., and Huang, R.-x. (2013) Mobility of TX100 suspended multiwalled carbon nanotubes (MWCNTs) and the facilitated transport of phenanthrene in real soil columns. Geoderma, 207: 1–7.
  • Godinez, I.G., Darnault, C.J., Khodadoust, A.P., and Bogdan, D. (2013) Deposition and release kinetics of nano-TiO 2 in saturated porous media: effects of solution ionic strength and surfactants. Environ. Pollut., 174: 106–113.
  • Kim, H.-J., Phenrat, T., Tilton, R.D., and Lowry, G.V. (2012) Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J. Colloid Interf. Sci., 370: 1–10.
  • Lv, X., Gao, B., Sun, Y., Shi, X., Xu, H., and Wu, J. (2014) Effects of humic acid and solution chemistry on the retention and transport of cerium dioxide nanoparticles in saturated porous media. Water Air Soil Pollut., 225: 1–9.
  • Wang, Y., Li, Y., Fortner, J.D., Hughes, J.B., Abriola, L.M., and Pennell, K.D. (2008) Transport and retention of nanoscale C60 aggregates in water-saturated porous media. Environ. Sci. Technol., 42: 3588–3594.
  • Schrick, B., Hydutsky, B.W., Blough, J.L., and Mallouk, T.E. (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem. Mater., 16: 2187–2193.
  • Tian, Y., Gao, B., Wu, L., Muñoz-Carpena, R., and Huang, Q. (2012) Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media. J. Hazard. Mater., 231: 79–87.
  • Liang, Y., Bradford, S.A., Simunek, J., Heggen, M., Vereecken, H., and Klumpp, E. (2013) Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environ. Sci. Technol., 47: 12229–12237.
  • Raychoudhury, T., Tufenkji, N., and Ghoshal, S. (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res., 46: 1735–1744.
  • Choy, C.C., Wazne, M., and Meng, X. (2008) Application of an empirical transport model to simulate retention of nanocrystalline titanium dioxide in sand columns. Chemosphere, 71: 1794–1801.
  • Qi, Z., Zhang, L., Wang, F., Hou, L., and Chen, W. (2014) Factors controlling transport of graphene oxide nanoparticles in saturated sand columns. Environ. Toxicol. Chem., 33: 998–1004.
  • Tian, Y., Gao, B., and Ziegler, K.J. (2011) High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media. J. Hazard. Mater., 186: 1766–1772.
  • Wang, C., Dai, J., Shang, C., and Chen, G. (2013) Removal of aqueous fullerene nC60 from wastewater by alum-enhanced primary treatment. Sep. Purif. Technol., 116: 61–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.