593
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Membrane-Based Technologies for the Up-Concentration of Municipal Wastewater: A Review of Pretreatment Intensification

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-19 | Received 20 Jan 2018, Accepted 19 May 2018, Published online: 06 Jun 2018

References

  • McCarty, P.L., Bae, J. and Kim, J. (2011) Domestic wastewater treatment as a net energy producer – Can this be achieved? Environ. Sci. Technol., 45(17): 7100–7106.
  • Garrido, J.M., Fdz-Polanco, M. and Fdz-Polanco, F. (2013) Working with energy and mass balances: A conceptual framework to understand the limits of municipal wastewater treatment. Water Sci. Technol., 67(10): 2294–2301.
  • Gude, V.G. (2015) Energy and water autarky of wastewater treatment and power generation systems. Renew. Sustain. Energy Rev., 45: 52–68.
  • Shizas, I. and Bagley, D.M. (2004) Experimental determination of energy content of unknown organics in municipal wastewater streams. J. Energy Eng., 130(2): 45–53.
  • Metcalf, E. and Eddy, H. (2003) Wastewater Engineering: Treatment and Reuse; McGraw-Hill Science: Columbus, Ohio, USA.
  • Dulekgurgen, E., Doǧruel, S., Karahan, Ö. and Orhon, D. (2006) Size distribution of wastewater COD fractions as an index for biodegradability. Water Res., 40(2): 273–282.
  • Wu, J., Yan, G., Zhou, G. and Xu, T. (2014) Wastewater COD biodegradability fractionated by simple physical-chemical analysis. Chem. Eng. J., 258: 450–459.
  • Hao, X., Liu, R. and Huang, X. (2015) Evaluation of the potential for operating carbon neutral WWTPs in China. Water Res., 87: 424–431.
  • Fdz-Polanco, F., Velazquez, R., Perez-Elvira, S.I., Casas, C., Del Barrio, D., Cantero, F.J., Fdz-Polanco, M., Rodriguez, P., Panizo, L., Serrat, J. and Rouge, P. (2008) Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants. Water Sci. Technol., 57(8): 1221–1226.
  • Cano, R., Pérez-Elvira, S.I. and Fdz-Polanco, F. (2015) Energy feasibility study of sludge pretreatments: A review. Appl. Energy, 149: 176–185.
  • Jenicek, P., Kutil, J., Benes, O., Todt, V., Zabranska, J. and Dohanyos, M. (2013) Energy self-sufficient sewage wastewater treatment plants: Is optimized anaerobic sludge digestion the key? Water Sci. Technol., 68(8): 1739–1743.
  • Álvarez, J.A., Armstrong, E., Gomez, M. and Soto, M. (2008) Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresour. Technol., 99(15): 7051–7062.
  • Chong, S., Sen, T.K., Kayaalp, A. and Ang, H.M. (2012) The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment – A state-of-the-art review. Water Res., 46(11): 3434–3470.
  • Lew, B., Lustig, I., Beliavski, M., Tarre, S. and Green, M. (2011) An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresour. Technol., 102(7): 4921–4924.
  • Takahashi, M., Yamaguchi, T., Kuramoto, Y., Nagano, A., Shimozaki, S., Sumino, H., Araki, N., Yamazaki, S., Kawakami, S. and Harada, H. (2011) Performance of a pilot-scale sewage treatment: An up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactors combined system by sulfur-redox reaction process under low-temperature conditions. Bioresour. Technol., 102(2): 753–757.
  • Hoinkis, J., Deowan, S.A., Panten, V., Figoli, A., Huang, R.R. and Drioli, E. (2012) Membrane bioreactor (MBR) technology – A promising approach for industrial water reuse. Procedia Eng., 33(2009): 234–241.
  • Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A. and Olsson, G. (2012) Application of membrane bioreactor technology in treating high strength industrial wastewater: Aperformance review. Desalination, 305: 1–11.
  • Santos, A., Ma, W. and Judd, S.J. (2011) Membrane bioreactors: Two decades of research and implementation. Desalination, 273(1): 148–154.
  • Lateef, S.K., Soh, B.Z. and Kimura, K. (2013) Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter. Bioresour. Technol., 150: 149–155.
  • Jin, Z., Gong, H., Temmink, H., Nie, H., Wu, J., Zuo, J. and Wang, K. (2016) Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery. Chem. Eng. J., 292: 130–138.
  • Jin, Z., Gong, H. and Wang, K. (2015) Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery. J. Hazard. Mater., 283: 824–831.
  • Kimura, K., Honoki, D. and Sato, T. (2017) Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: Up-concentration of organic matter for efficient energy recovery. Sep. Purif. Technol., 181: 37–43.
  • Gong, H., Jin, Z., Wang, X. and Wang, K. (2015) Membrane fouling controlled by coagulation/adsorption during direct sewage membrane filtration (DSMF) for organic matter concentration. J. Environ. Sci. (China), 32: 1–7.
  • Abdessemed, D. and Nezzal, G. (2002) Treatment of primary effluent by coagulation-adsorption-ultrafiltration for reuse. Desalination, 152: 367–373.
  • Diamantis, V., Melidis, P. and Aivasidis, A. (2011) Efficiency and sustainability of urban wastewater treatment with maximum separation of the solid and liquid fraction. In Agathos, S.N., (Ed.,) Comprehensive Biotechnology, 2nd ed., Amsterdam: Elsevier B.V. vol 6, pp 507–515.
  • Ma, J., Wang, Z., Xu, Y., Wang, Q., Wu, Z. and Grasmick, A. (2013) Organic matter recovery from municipal wastewater by using dynamic membrane separation process. Chem. Eng. J., 219: 190–199.
  • Zhang, X., Ning, Z., Wang, D.K. and Diniz Da Costa, J.C. (2014) Processing municipal wastewaters by forward osmosis using CTA membrane. J. Memb. Sci., 468: 269–275.
  • Wang, Z., Zheng, J., Tang, J., Wang, X. and Wu, Z. (2016) A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: Performance and implications. Sci. Rep., 6(November 2015): 21653.
  • Mels, A. (2001) Physical-Chemical Pretreatment as an Option for Increased Sustainability of Municipal Wastewater Treatment Plants. PhD thesis, University of Wageningen, Wageninen, The Netherlands.
  • Buonomenna, M.G. and Bae, J. (2015) Membrane processes and renewable energies. Renew. Sustain. Energy Rev., 43: 1343–1398.
  • Verstraete, W. and Vlaeminck, S.E. (2011) ZeroWasteWater: Short-cycling of wastewater resources for sustainable cities of the future. Int. J. Sustain. Dev. World Ecol., 18(3): 253–264.
  • Judd, S.J. (2017) Membrane technology costs and me. Water Res., 122: 1–9.
  • Nascimento, T.A., Mejía, F.R., Fdz-Polanco, F. and Peña, M. (2017) Improvement of municipal wastewater pretreatment by direct membrane filtration. Environ. Technol., 38(20): 2562–2572.
  • Delgado Diaz, S., Vera Peña, L., González Cabrera, E., Martínez Soto, M., Vera Cabezas, L.M. and Bravo Sánchez, L.R. (2012) Effect of previous coagulation in direct ultrafiltration of primary settled municipal wastewater. Desalination, 304: 41–48.
  • Tuyet, N.T., Dan, N.P., Vu, N.C., Trung, N.L.H., Thanh, B.X., De Wever, H., Goemans, M. and Diels, L. (2016) Laboratory-scale membrane up-concentration and co-anaerobic digestion for energy recovery from sewage and kitchen waste. Water Sci. Technol., 73(3): 597–606.
  • Mezohegyi, G., Bilad, M.R. and Vankelecom, I.F.J. (2012) Direct sewage up-concentration by submerged aerated and vibrated membranes. Bioresour. Technol., 118: 1–7.
  • Ahn, K.-H., Song, K.-G., Yeom, I.-T. and Park, K.-Y. (2001) Performance comparison of direct membrane separation and membrane bioreactor for domestic wastewater treatment and water reuse. Water Sci. Technol. Water Supply, 1(5–6): 315–323.
  • Hey, T., Väänänen, J., Heinen, N., La Cour Jansen, J. and Jönsson, K. (2016) Potential of combining mechanical and physicochemical municipal wastewater pre-treatment with direct membrane filtration. Environ. Technol., 38(1): 108–115.
  • Van Nieuwenhuijzen, A.F., Evenblij, H. and Van Der Graaf, J.H.J.M. (2000) Direct wastewater membrane filtration for advanced particle removal from raw wastewater. In Chemical Water and Wastewater Treatment VI; Hahn, H.H., Hoffmann, E. and Ødegaard, H., Eds.; Springer-Verlag: Berlin, 235–244.
  • Ravazzini, A.M., Van Nieuwenhuijzen, A.F. and Van Der Graaf, J.H.M.J. (2005) Direct ultrafiltration of municipal wastewater: Comparison between filtration of raw sewage and primary clarifier effluent. Desalination, 178(1–3 Special Issue): 51–62.
  • Bendick, J.A., Miller, C.J., Kindle, B.J., Shan, H.F., Vidic, R.D. and Neufeld, R.D. (2005) Pilot scale demonstration of cross-flow ceramic membrane microfiltration for treatment of combined and sanitary sewer overflows. J. Environ. Eng., 131(11): 1532–1539.
  • Ramon, G., Green, M., Semiat, R. and Dosoretz, C. (2004) Low strength graywater characterization and treatment by direct membrane filtration. Desalination, 170(3): 241–250.
  • Diamantis, V.I., Antoniou, I., Melidis, P. and Aivasidis, A. (2009) Direct membrane filtration of sewage using aerated flat-sheet membranes. Proc. 11th Int. Conf. Environ. Sci. Technol, Chania, Crete, Sept. 3–5.
  • Cath, T.Y., Childress, A.E. and Elimelech, M. (2006) Forward osmosis: Principles, applications, and recent developments. J. Memb. Sci., 281(1–2): 70–87.
  • Li, J., Niu, A., Lu, C.J., Zhang, J.H., Junaid, M., Strauss, P.R., Xiao, P., Wang, X., Ren, Y.W. and Pei, D.S. (2017) A novel forward osmosis system in landfill leachate treatment for removing polycyclic aromatic hydrocarbons and for direct fertigation. Chemosphere, 168: 112–121.
  • Coday, B.D., Xu, P., Beaudry, E.G., Herron, J., Lampi, K., Hancock, N.T. and Cath, T.Y. (2014) The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 333(1): 23–35.
  • Hancock, N.T., Xu, P., Roby, M.J., Gomez, J.D. and Cath, T.Y. (2013) Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale. J. Memb. Sci., 445: 34–46.
  • Nguyen, N.C., Chen, S.S., Yang, H.Y. and Hau, N.T. (2013) Application of forward osmosis on dewatering of high nutrient sludge. Bioresour. Technol., 132: 224–229.
  • Holloway, R.W., Childress, A.E., Dennett, K.E. and Cath, T.Y. (2007) Forward osmosis for concentration of anaerobic digester centrate. Water Res., 41(17): 4005–4014.
  • Akther, N., Sodiq, A., Giwa, A., Daer, S., Arafat, H.A. and Hasan, S.W. (2015) Recent advancements in forward osmosis desalination: A review. Chem. Eng. J., 281: 502–522.
  • Jin, X., Shan, J., Wang, C., Wei, J. and Tang, C.Y. (2012) Rejection of pharmaceuticals by forward osmosis membranes. J. Hazard. Mater., 227–228: 55–61.
  • Kim, D.I., Kim, J., Shon, H.K. and Hong, S. (2015) Pressure retarded osmosis (PRO) for integrating seawater desalination and wastewater reclamation: Energy consumption and fouling. J. Memb. Sci., 483: 34–41.
  • Achilli, A. and Marchand, E.A. (2009) The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination. 239(1–3): 10–21.
  • Lutchmiah, K., Cornelissen, E.R., Harmsen, D.J.H., Post, J.W., Lampi, K., Ramaekers, H., Rietveld, L.C. and Roest, K. (2011) Water recovery from sewage using forward osmosis. Water Sci. Technol., 64(7): 1443–1449.
  • Hey, T., Zarebska, A., Bajraktari, N., Vogel, J., Hélix-Nielsen, C., La Cour Jansen, J. and Jönsson, K. (2016) Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis. Environ. Technol., 38(18): 2295–2304.
  • Ortega-Bravo, J.C., Ruiz-Filippi, G., Donoso-Bravo, A., Reyes-Caniupán, I.E. and Jeison, D. (2016) Forward osmosis: Evaluation thin-film-composite membrane for municipal sewage concentration. Chem. Eng. J., 306: 531–537.
  • Gao, Y., Fang, Z., Liang, P. and Huang, X. (2018) Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior. Bioresour. Technol., 247: 730–735.
  • Chung, T.-S., Zhang, S., Wang, K.Y., Su, J. and Ling, M.M. (2012) Forward osmosis processes: Yesterday, today and tomorrow. Desalination, 287: 78–81.
  • Van Der Bruggen, B. and Luis, P. (2014) Forward osmosis: Understanding the hype. Rev. Chem. Eng., 31(1): 1–12.
  • Ansari, A.J., Hai, F.I., Price, W.E., Drewes, J.E. and Nghiem, L.D. (2017) Forward osmosis as a platform for resource recovery from municipal wastewater – A critical assessment of the literature. J. Memb. Sci., 529: 195–206.
  • Sun, Y., Tian, J., Zhao, Z., Shi, W., Liu, D. and Cui, F. (2016) Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: A comparison between direct FO and OMBR. Water Res., 104: 330–339.
  • Mi, B. and Elimelech, M. (2010) Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Memb. Sci., 348(1–2): 337–345.
  • Wang, Z., Tang, J., Zhu, C., Dong, Y., Wang, Q. and Wu, Z. (2015) Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment. J. Memb. Sci., 475: 184–192.
  • Lutchmiah, K., Verliefde, A.R.D., Roest, K., Rietveld, L.C. and Cornelissen, E.R. (2014) Forward osmosis for application in wastewater treatment: A review. Water Res., 58: 179–197.
  • Valladares Linares, R., Li, Z., Abu-Ghdaib, M., Wei, C.H., Amy, G. and Vrouwenvelder, J.S. (2013) Water harvesting from municipal wastewater via osmotic gradient: An evaluation of process performance. J. Memb. Sci., 447: 50–56.
  • Qiu, G. and Ting, Y.P. (2014) Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour. Technol., 170: 221–229.
  • Gu, Y., Chen, L., Ng, J.W., Lee, C., Chang, V.W.C. and Tang, C.Y. (2015) Development of anaerobic osmotic membrane bioreactor for low-strength wastewater treatment at mesophilic condition. J. Memb. Sci., 490: 197–208.
  • Coday, B.D., Yaffe, B.G.M., Xu, P. and Cath, T.Y. (2014) Rejection of trace organic compounds by forward osmosis membranes: A literature review. Environ. Sci. Technol., 48(7): 3612–3624.
  • Hancock, N.T., Xu, P., Heil, D.M., Bellona, C. and Cath, T.Y. (2011) Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environ. Sci. Technol., 45(19): 8483–8490.
  • Valladares Linares, R., Yangali-Quintanilla, V., Li, Z. and Amy, G. (2011) Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res., 45(20): 6737–6744.
  • Shaffer, D.L., Werber, J.R., Jaramillo, H., Lin, S. and Elimelech, M. (2015) Forward osmosis: Where are we now? Desalination, 356: 271–284.
  • Klaysom, C., Cath, T.Y., Depuydt, T. and Vankelecom, I.F.J. (2013) Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chem. Soc. Rev., 42(16): 6959–6989.
  • McCutcheon, J.R. and Elimelech, M. (2006) Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Memb. Sci., 284(1–2): 237–247.
  • Zou, S., Gu, Y., Xiao, D. and Tang, C.Y. (2011) The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J. Memb. Sci., 366(1–2): 356–362.
  • Zhao, S., Zou, L., Tang, C.Y. and Mulcahy, D. (2012) Recent developments in forward osmosis: Opportunities and challenges. J. Memb. Sci., 396: 1–21.
  • Ansari, A.J., Hai, F.I., Guo, W., Ngo, H.H., Price, W.E. and Nghiem, L.D. (2016) Factors governing the pre-concentration of wastewater using forward osmosis for subsequent resource recovery. Sci. Total Environ., 566–567: 559–566.
  • Corzo, B., De La Torre, T., Sans, C., Ferrero, E. and Malfeito, J.J. (2017) Evaluation of draw solutions and commercially available forward osmosis membrane modules for wastewater reclamation at pilot scale. Chem. Eng. J., 326: 1–8.
  • Ge, Q., Ling, M. and Chung, T.S. (2013) Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. J. Memb. Sci., 442: 225–237.
  • Evren, M., Ozgun, H., Kaan, R., Ozturk, I., Roest, K. and Van Lier, J.B. (2012) A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresour. Technol., 122: 196–206.
  • Saleem, M., Alibardi, L., Lavagnolo, M.C., Cossu, R. and Spagni, A. (2016) Effect of filtration flux on the development and operation of a dynamic membrane for anaerobic wastewater treatment. J. Environ. Manage., 180: 459–465.
  • Ersahin, M.E., Ozgun, H., Tao, Y. and Van Lier, J.B. (2014) Applicability of dynamic membrane technology in anaerobic membrane bioreactors. Water Res., 48(1): 420–429.
  • Gong, H., Wang, X., Zheng, M., Jin, Z. and Wang, K. (2014) Direct sewage filtration for concentration of organic matters by dynamic membrane. Water Sci. Technol., 70(8): 1434–1440.
  • Fan, B. and Huang, X. (2002) Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment. Environ. Sci. Technol., 36(23): 5245–5251.
  • Hey, T., Bajraktari, N., Davidsson, Å., Vogel, J., Madsen, H.T., Hélix-Nielsen, C., Jansen, J.L.C. and Jönsson, K. (2017) Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment. Environ. Technol., 39(3): 264–276.
  • Sousa, M.R.S., Lora-Garcia, J. and López-Pérez, M.-F. (2018) Experimental study and modeling of forward osmosis process for activated sludge concentration by using residual brine from a stuffed olive factory as draw solution. J. Water Process Eng., 21: 143–153.
  • Xue, W., Yamamoto, K. and Tobino, T. (2016) Membrane fouling and long-term performance of seawater-driven forward osmosis for enrichment of nutrients in treated municipal wastewater. J. Memb. Sci., 499: 555–562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.