419
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Membrane-based Separation in Flow Analysis for Environmental and Food Applications

, &
Pages 37-54 | Received 22 Mar 2017, Accepted 03 Jul 2018, Published online: 20 Aug 2018

References

  • Raynie, D.E. (2016) Trends in sample preparation. LC-GC, 29: 142–154.
  • Pawliszyn, J. (2003) Sample preparation: quo vadis? Anal. Chem., 75: 2543–2558. doi:10.1021/ac034094h
  • Liska, I. (2000) Fifty years of solid-phase extraction in water analysis – historical development and overview. J. Chromatogr. A, 885: 3–16. doi:10.1016/S0021-9673(99)01144-9
  • Chen, Y., Guo, Z., Wang, X. and Qiu, C. (2008) Sample preparation. J. Chromatogr. A, 1184: 191–219. doi:10.1016/j.chroma.2007.10.026
  • Hennion, M.C. (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A, 856: 3–54. doi:10.1016/S0021-9673(99)00832-8
  • Silvestre, C.I.C., Santos, J.L.M., Lima, J.L.F.C. and Zagatto, E.A.G. (2009) Liquid – liquid extraction in flow analysis: a critical review. Anal. Chim. Acta, 652: 54–65. doi:10.1016/j.aca.2009.05.042
  • Miró, M. and Frenzel, W. (2004) Automated membrane-based sampling and sample preparation exploiting flow-injection analysis. TrAC Trends Anal. Chem., 23: 624–636. doi:10.1016/j.trac.2004.07.006
  • Pan, J., Zhang, C., Zhang, Z. and Li, G. (2014) Review of online coupling of sample preparation techniques with liquid chromatography. Anal. Chim. Acta, 815: 1–15. doi:10.1016/j.aca.2014.01.017
  • Karlberg, B. (1988) Flow injection extraction in theory and practice. Fresenius J. Anal. Chem., 329: 660–662. doi:10.1007/BF00624770
  • Smith, R.M. (2003) Before the injection - modern methods of sample preparation for separation techniques. J. Chromatogr. A, 1000: 3–27. doi:10.1016/S0021-9673(03)00511-9
  • Ruzicka, J. and Hansen, E.H. (1975) Flow injection analyses. Anal. Chim. Acta, 78: 145–157. doi:10.1016/S0003-2670(01)84761-9
  • Ruzicka, J. and Marshall, G.D. (1990) Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal. Chim. Acta, 237: 329–343. doi:10.1016/S0003-2670(00)83937-9
  • Segundo, M.A. and Rangel, A.O.S.S. (2002) Flow analysis: a critical view of its evolution and perspectives. J. Flow Inject. Anal., 19: 3–8.
  • Ruzicka, J. (2000) Lab-on-valve: universal microflow analyzer based on sequential and bead injection. Analyst, 125: 1053–1060.
  • Ivaska, A. and Ruzicka, J. (1993) From flow injection to sequential injection: comparison of methodologies and selection of liquid drives. Analyst, 118: 885–889. doi:10.1039/AN9931800885
  • Ruzicka, J. and Hansen, E.H. (2008) Retro-review of flow-injection analysis. TrAC Trends Anal. Chem., 27: 390–393. doi:10.1016/j.trac.2008.03.004
  • Santos, I.C., Mesquita, R.B.R. and Rangel, A.O.S.S. (2015) The state of the art of flow-through solid-phase spectrometry. LC-GC North Am., 33: 25–31.
  • Gonçalves, L.M., Valente, I.M. and Rodrigues, J.A. (2017) Recent advances in membrane-aided extraction and separation for analytical purposes. Sep. Purif. Rev., 46: 179–194. doi:10.1080/15422119.2016.1235050
  • Frenzel, W. and Markeviciute, I. (2017) Membrane-based sample preparation for ion chromatography – techniques, instrumental configurations and applications. J. Chromatogr. A, 1479: 1–19. doi:10.1016/j.chroma.2016.11.052
  • Jönsson, J.Å. and Mathiasson, L. (2000) Membrane-based techniques for sample enrichment. J. Chromatogr. A, 902: 205–225. doi:10.1016/S0021-9673(00)00922-5
  • Van De Merbel, N.C. (1999) Membrane-based sample preparation coupled on-line to chromatography or electrophoresis. J. Chromatogr. A, 856: 55–82. doi:10.1016/S0021-9673(99)00581-6
  • Cordero, B.M., Pavón, J.L.P., Pinto, C.G., Laespada, M.E.F., Martinez, R.C. and Gonzalo, E.R. (2000) Analytical applications of membrane extraction in chromatography and electrophoresis. J. Chromatogr. A, 902: 195–204. doi:10.1016/S0021-9673(00)00835-9
  • Staden, J.F. (1995) Membrane separation in flow injection systems. Fresenius. J. Anal. Chem., 352: 271–302. doi:10.1007/BF00322225
  • Miró, M. and Frenzel, W. (2005) The potential of microdialysis as an automatic sample-processing technique for environmental research. TrAC - Trends Anal. Chem., 24: 324–333. doi:10.1016/j.trac.2004.10.004
  • De Castro, M.D.L., Capote, F.P. and Ávila, N.S. (2008) Is dialysis alive as a membrane-based separation technique? TrAC Trends Anal. Chem., 27: 315–326. doi:10.1016/j.trac.2008.01.015
  • Pyrzynska, K. (2006) Preconcentration and recovery of metal ions by donnan dialysis. Microchim. Acta, 153: 117–126. doi:10.1007/s00604-005-0434-4
  • Moskvin, L.N. and Nikitina, T.G. (2004) Membrane methods of substance separation in analytical chemistry. J. Anal. Chem., 59: 2–16.
  • Sastre, A.M., Kumar, A., Shukla, J.P. and Singh, R.K. (1998) Improved techniques in liquid membrane separations: an overview. Sep. Purif. Methods, 27: 213–298. doi:10.1080/03602549809351641
  • Nghiem, L.D., Mornane, P., Potter, I.D., Perera, J.M., Cattrall, R.W. and Kolev, S.D. (2006) Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Memb. Sci., 281: 7–41. doi:10.1016/j.memsci.2006.03.035
  • Almeida, G.S., Cattrall, R.W. and Kolev, S.D. (2017) Polymer inclusion membranes (PIMs) in chemical analysis – a review. Anal. Chim. Acta, 987: 1–14. doi:10.1016/j.aca.2017.07.032
  • Kolev, S. and McKelvie, I. (2008) Advances in Flow Injection Analysis and Related Techniques; Comprehensive Analytical Chemistry; Elsevier Science: New York, USA.
  • Cerdá, V. (2014) Flow Analysis: A Practical Guide; Elsevier Science: New York, USA.
  • Fialab Systems. Sandwich gas membrane sensor. http://www.flowinjection.com/index.php/products/flow-cells?pid=61&sid=100:sandwich-membrane-flow-cell-smfc (accessed May 3, 2018).
  • Somboot, W., Jakmunee, J. and Kanyanee, T. (2017) An exploiting of cost-effective direct current conductivity detector in gas diffusion flow injection system. Talanta, 170: 298–305. doi:10.1016/j.talanta.2017.04.015
  • Silva, C.R., Oliveira, E., Zagatto, E.A.G. and Henriquez, C. (2016) A novel flow-based procedure for automation of respirometric assays in soils. Talanta, 158: 14–20. doi:10.1016/j.talanta.2016.05.026
  • Martinotti, V., Balordi, M. and Ciceri, G. (2012) A flow injection analyser conductometric coupled system for the field analysis of free dissolved CO2 and total dissolved inorganic carbon in natural waters. Anal. Bioanal. Chem., 403: 1083–1093. doi:10.1007/s00216-012-5762-8
  • Butwong, N., Srijaranai, S., Ngeontae, W. and Burakham, R. (2012) Speciation of arsenic (III) and arsenic (V) based on quenching of CdS quantum dots fluorescence using hybrid sequential injection-stopped flow injection gas-diffusion system. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 97: 17–23. doi:10.1016/j.saa.2012.05.054
  • Pencharee, S., Faber, P.A., Ellis, P.S., Cook, P., Intaraprasert, J., Grudpan, K. and Mckelvie, I. (2012) Underway determination of dissolved inorganic carbon in estuarine waters by gas-diffusion flow analysis with C4D detection. Anal. Methods, 4: 1278–1283. doi:10.1039/c2ay25113b
  • Butwong, N., Noipa, T., Burakham, R., Srijaranai, S. and Ngeontae, W. (2011) Determination of arsenic based on quenching of CdS quantum dots fluorescence using the gas-diffusion flow injection method. Talanta, 8: 1063–1069. doi:10.1016/j.talanta.2011.05.023
  • Segundo, R.L.A., Mesquita, R.B.R., Ferreira, M.T.S.O.B., Teixeira, C.F.C.P., Bordalo, A.A. and Rangel, A.O.S.S. (2011) Development of a sequential injection gas diffusion system for the determination of ammonium in transitional and coastal waters. Anal. Methods, 3: 2049–2055. doi:10.1039/c1ay05129f
  • Almendral-Parra, M.-J., Alonso-Mateos, A. and Fuentes-Prieto, M.-S. (2010) A gas diffusion technique coupled with flow injection systems. Optimization of the process in its application to the fluorimetric determination of ammonium in water samples. J. Fluoresc., 20: 55–65. doi:10.1007/s10895-009-0521-8
  • Oliveira, S.M., Lopes, T.I.M.S., Tóth, I.V. and Rangel, A.O.S.S. (2007) A multi-commuted flow injection system with a multi-channel propulsion unit placed before detection: spectrophotometric determination of ammonium. Anal. Chim. Acta, 600: 29–34. doi:10.1016/j.aca.2007.01.019
  • Lagalante, A.F. and Greenbacker, P.W. (2007) Flow injection analysis of imidacloprid in natural waters and agricultural matrixes by photochemical dissociation, chemical reduction, and nitric oxide chemiluminescence detection. Anal. Chim. Acta, 590: 151–158. doi:10.1016/j.aca.2007.03.034
  • Oliveira, P.C.C., Masini, J.C., Galhardo, C.X., Lima, J.C.S., Sant’ana, A.E.G., Vasconcelos, A.M.G., Nunes, W.P. and Amaral, O.L.C. (2006) A new approach to construct diffusion/permeation cell for use in flow systems. Application in the spectrophotometric determination of bicarbonate ions. J. Braz. Chem. Soc., 17: 976–980. doi:10.1590/S0103-50532006000500023
  • Sun, A., Li, J. and Liu, R. (2006) High-performance liquid chromatographic determination of phenolic compounds in natural water coupled with on-line flow injection membrane extraction-preconcentration. J. Sep. Sci., 29: 995–1000.
  • Zhu, Z., Lu, J.J., Almeida, M.I.G.S., Pu, Q., Kolev, S.D. and Liu, S. (2015) A microfabricated electroosmotic pump coupled to a gas-diffusion microchip for flow injection analysis of ammonia. Microchim. Acta, 182: 1063–1070. doi:10.1007/s00604-014-1410-7
  • Themelis, D.G. and Kika, F.S. (2006) Gas-diffusion flow injection assay for the selective determination of chlorine dioxide based on the fluorescence quenching of chromotropic acid. Microchem. J., 82: 108–112. doi:10.1016/j.microc.2005.12.001
  • Mesquita, R.B.R. and Rangel, A.O.S.S. (2005) Gas diffusion sequential injection system for the spectrophotometric determination of free chlorine with o-dianisidine. Talanta, 68: 268–273. doi:10.1016/j.talanta.2005.07.028
  • Watson, R.J., Butler, E.C.V., Clementson, L.A. and Berry, K.M. (2005) Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater. J. Environ. Monit., 7: 37–42. doi:10.1039/b405924g
  • De Armas, G., Ferrer, L., Miró, M., Estela, J.M. and Cerdà, V. (2004) In-line membrane separation method for sulfide monitoring in wastewaters exploiting multisyringe flow injection analysis. Anal. Chim. Acta, 524: 89–96. doi:10.1016/j.aca.2004.02.050
  • Zhou, Q., Liu, J., Jiang, G., Liu, G. and Cai, Y. (2004) Sensitivity enhancement of chlorinated phenols by continuous flow liquid membrane extraction followed by capillary electrophoresis. J. Sep. Sci., 27: 576–580. doi:10.1002/jssc.200301632
  • Miró, M. and Frenzel, W. (2003) A novel flow-through microdialysis separation unit with integrated differential potentiometric detection for the determination of chloride in soil samples. Analyst, 128: 1291–1297. doi:10.1039/B306747E
  • Ganeshjeevan, R., Chandrasekar, R., Yuvaraj, S. and Radhakrishnan, G. (2003) Determination of hexavalent chromium by on-line dialysis ion chromatography in a matrix of strong colourants and trivalent chromium. J. Chromatogr. A, 988: 157–165. doi:10.1016/S0021-9673(02)02051-4
  • Kodama, T., Ichikawa, T., Hidaka, K. and Furuya, K. (2015) A highly sensitive and large concentration range colorimetric continuous flow analysis for ammonium concentration. J. Oceanogr., 71: 65–75. doi:10.1007/s10872-014-0260-6
  • Danchana, K., Maya, F., Wilairat, P., Uraisin, K. and Cerdà, V. (2015) Spectrophotometric determination of bromide in water using the multisyringe flow injection analysis technique coupled to a gas-diffusion unit. Anal. Methods, 7: 4202–4208. doi:10.1039/C5AY00202H
  • Henriquez, C., Horstkotte, B. and Cerdà, V. (2014) A highly reproducible solenoid micropump system for the analysis of total inorganic carbon and ammonium using gas-diffusion with conductimetric detection. Talanta, 118: 186–194. doi:10.1016/j.talanta.2013.10.005
  • Nitiyanontakit, S., Varanusupakul, P. and Miró, M. (2013) Hybrid flow analyzer for automatic hollow-fiber-assisted ionic liquid-based liquid-phase microextraction with in-line membrane regeneration. Anal. Bioanal. Chem., 405: 3279–3288. doi:10.1007/s00216-013-6744-1
  • Henríquez, C., Horstkotte, B. and Cerdà, V. (2013) Conductometric determination of ammonium by a multisyringe flow injection system applying gas diffusion. Int. J. Environ. Anal. Chem., 93: 1236–1252. doi:10.1080/03067319.2012.746322
  • Santos, I.C., Mesquita, R.B.R., Machado, A., Bordalo, A.A. and Rangel, A.O.S.S. (2013) Sequential injection methodology for carbon speciation in bathing waters. Anal. Chim. Acta, 778: 38–47. doi:10.1016/j.aca.2013.03.043
  • Nagul, E.A., Fontàs, C., McKelvie, I.D., Cattrall, R.W. and Kolev, S.D. (2013) The use of a polymer inclusion membrane for separation and preconcentration of orthophosphate in flow analysis. Anal. Chim. Acta, 803: 82–90. doi:10.1016/j.aca.2013.07.052
  • Giménez-Gómez, P., Gutiérrez-Capitán, M., Puig-Pujol, A., Capdevila, F., Muñoz, S., Tobeña, A., Miró, A. and Jiménez-Jorquera, C. (2017) Analysis of free and total sulfur dioxide in wine by using a gas-diffusion analytical system with pH detection. Food Chem., 228: 518–525. doi:10.1016/j.foodchem.2017.02.026
  • Vidigal, S.S.M.P. and Rangel, A.O.S.S. (2017) A flow-based platform for measuring the acidity parameters in wine. Talanta, 168: 313–319. doi:10.1016/j.talanta.2017.03.029
  • Martins, P.R., Popolim, W.D., Nagato, L.A.F., Takemoto, E., Araki, K., Toma, H.E., Angnes, L. and Penteado, M.D.V.C. (2011) Fast and reliable analyses of sulphite in fruit juices using a supramolecular amperometric detector encompassing in flow gas diffusion unit. Food Chem., 127: 249–255. doi:10.1016/j.foodchem.2010.12.103
  • Kritsunankul, O. and Jakmunee, J. (2011) Simultaneous determination of some food additives in soft drinks and other liquid foods by flow injection on-line dialysis coupled to high performance liquid chromatography. Talanta, 84: 1342–1349. doi:10.1016/j.talanta.2011.02.045
  • Gonçalves, L.M., Pacheco, J.G. and Magalhães, P.J. (2010) Determination of free and total sulfites in wine using an automatic flow injection analysis system with voltammetric detection. Food Addit. Contam. Part A, 27: 175–180. doi:10.1080/19440040903261547
  • Dias, A.C.B., Silva, R.A.O. and Arruda, M.A.Z. (2010) A sequential injection system for indirect spectrophotometric determination of lactic acid in yogurt and fermented mash samples. Microchem. J., 96: 151–156. doi:10.1016/j.microc.2010.02.016
  • Oliveira, S.M., Lopes, T.I.M.S., Tóth, I.V. and Rangel, A.O.S.S. (2010) Simultaneous determination of tartaric acid and potassium in wines using a multicommuted flow system with dialysis. Talanta, 81: 1735–1741. doi:10.1016/j.talanta.2010.03.032
  • Oliveira, S.M., Lopes, T.I.M.S., Tóth, I.V. and Rangel, A.O.S.S. (2009) Development of a gas diffusion multicommuted flow injection system for the determination of sulfur dioxide in wines, comparing malachite green and pararosaniline chemistries. J. Agric. Food Chem., 57: 3415–3422. doi:10.1021/jf803639n
  • Kritsunankul, O., Pramote, B. and Jakmunee, J. (2009) Flow injection on-line dialysis coupled to high performance liquid chromatography for the determination of some organic acids in wine. Talanta, 79: 1042–1049. doi:10.1016/j.talanta.2009.03.001
  • Tzanavaras, P.D., Thiakouli, E. and Themelis, D.G. (2009) Hybrid sequential injection – flow injection manifold for the spectrophotometric determination of total sulfite in wines using o-phthalaldehyde and gas-diffusion. Talanta, 77: 1614–1619. doi:10.1016/j.talanta.2008.07.055
  • Zacharis, C.K., Tzanavaras, P.D., Voulgaropoulos, A.N. and Karlberg, B. (2009) Amperometric determination of cyanides at the low ppb level by automated preconcentration based on gas diffusion coupled to sequential injection analysis. Talanta, 77: 1620–1626. doi:10.1016/j.talanta.2008.07.055
  • Themelis, D.G., Karastogianni, S.C. and Tzanavaras, P.D. (2009) Selective determination of cyanides by gas diffusion-stopped flow-sequential injection analysis and an on-line standard addition approach. Anal. Chim. Acta, 632: 93–100. doi:10.1016/j.aca.2008.10.074
  • Vakh, C., Evdokimova, E., Pochivalov, A., Moskvin, L. and Bulatov, A. (2017) A novel flow injection chemiluminescence method for automated and miniaturized determination of phenols in smoked food samples. Food Chem., 237: 929–935. doi:10.1016/j.foodchem.2017.06.049
  • Junsomboon, J. and Jakmunee, J. (2008) Flow injection conductometric system with gas diffusion separation for the determination of Kjeldahl nitrogen in milk and chicken meat. Anal. Chim. Acta, 627: 232–238. doi:10.1016/j.aca.2008.08.012
  • Chinvongamorn, C., Pinwattana, K., Praphairaksit, N., Imato, T. and Chailapakul, O. (2008) Amperometric determination of sulfite by gas diffusion-sequential injection with boron-doped diamond electrode. Sensors, 8: 1846–1857. doi:10.3390/s8010464
  • Dhaouadi, A., Monser, L. and Sadok, S. (2007) Validation of a flow-injection-gas diffusion method for total volatile basic nitrogen determination in seafood products. Food Chem., 103: 1049–1053. doi:10.1016/j.foodchem.2006.07.066
  • Vicente, S., Zagatto, E.A.G. and Borges, E.P. (2006) Exploiting gas diffusion for non-invasive sampling in flow analysis: determination of ethanol in alcoholic beverages. An. Acad. Bras. Cienc., 78: 23–29. doi:10.1590/S0001-37652006000100004
  • Carinhanha, J., Santos, C. and Korn, M. (2006) Exploiting sulphide generation and gas diffusion separation in a flow system for indirect sulphite determination in wines and fruit juices. Microchim. Acta, 153: 87–94. doi:10.1007/s00604-005-0453-1
  • Iida, Y., Suganuma, Y., Matsumoto, K. and Satoh, I. (2006) Novel determination system for urea in alcoholic beverages by using an FIA system with an acid urease column. Anal. Sci., 22: 173–176. doi:10.2116/analsci.22.173
  • Medina-Alonso, G., Carrasco-Fuentes, M. and Canizares-Macías, M.P. (2005) Coupling on-line of a dialyser with a flow-continuous system to separate Vitamin B12 from milk. Talanta, 68: 292–297. doi:10.1016/j.talanta.2005.08.028
  • Da Silva, I.S., Richter, E.M., Do Lago, C.L., Gutz, I.G., Tanaka, A.A. and Angnes, L. (2005) FIA-potentiometry in the sub-Nernstian response region for rapid and direct chloride assays in milk and in coconut water. Talanta, 67: 651–657. doi:10.1016/j.talanta.2005.03.010
  • Lima, M.J.R., Fernandes, S.M.V. and Rangel, A.O.S.S. (2004) Enzymatic determination of urea in milk by sequential injection with spectrophotometric and conductometric detection. J. Agric. Food Chem., 52: 6887–6890. doi:10.1021/jf0488312
  • Melo, D., Zagatto, E.A.G., Mattos, I.L. and Maniasso, N. (2003) Spectrophotometric flow-injection determination of sulphite in white wines involving gas diffusion through a concentric tubular membrane. J. Braz. Chem. Soc., 14: 375–379. doi:10.1590/S0103-50532003000300006
  • Calvo-López, A., Ymbern, O., Izquierdo, D. and Alonso-Chamarro, J. (2016) Low cost and compact analytical microsystem for carbon dioxide determination in production processes of wine and beer. Anal. Chim. Acta, 931: 64–69. doi:10.1016/j.aca.2016.05.010
  • Silva, H.A.D.F.O. and Álvares-Ribeiro, L.M.B.C. (2002) Optimization of a flow injection analysis system for tartaric acid determination in wines. Talanta, 58: 1311–1318. doi:10.1016/S0039-9140(02)00436-8
  • Antonia, A. and Allen, L.B. (2001) Extraction and analysis of lead in sweeteners by flow-Injection donnan dialysis with flame atomic absorption spectroscopy. J. Agric. Food Chem., 49: 4615–4618. doi:10.1021/jf010504w
  • Palmisano, F., Quinto, M., Rizzi, R. and Zambonin, P.G. (2001) Flow injection analysis of L-lactate in milk and yoghurt by on-line microdialysis and amperometric detection at a disposable biosensor. Analyst, 126: 866–870. doi:10.1039/b010180j
  • Mana, H. and Spohn, U. (2001) Sensitive and selective flow injection analysis of hydrogen sulfite/sulfur dioxide by fluorescence detection with and without membrane separation by gas diffusion. Anal. Chem., 73: 3187–3192. doi:10.1021/ac001049q
  • Cardwell, T.J. and Christophersen, M.J. (2000) Determination of sulfur dioxide and ascorbic acid in beverages using a dual channel flow injection electrochemical detection system. Analyst, 416: 105–110.
  • Atanassov, G.T., Lima, R.C., Mesquita, R.B.R., Rangel, A.O.S.S. and Tóth, I.V. (2000) Spectrophotometric determination of carbon dioxide and sulphur dioxide in wines by flow injection. Analusis, 28: 77–82. doi:10.1051/analusis:2000100
  • Segundo, M.A., Rangel, A.O.S.S., Cladera, A. and Cerdà, V. (2000) Multisyringe flow system: determination of sulfur dioxide in wines. Analyst, 125: 1501–1505.
  • Ruiz-Capillas, C., Gillyon, C.M. and Horner, W.F.A. (2000) Determination of volatile basic nitrogen and trimethylamine nitrogen in fish sauce by flow injection analysis. Eur. Food Res. Technol., 210: 434–436. doi:10.1007/s002170050577
  • Paula, N.T.G., Barbosa, E.M.O., Da Silva, P.A.B., De Souza, G.C.S., Nascimento, V.B. and Lavorante, A.F. (2016) In-line electrochemical reagent generation coupled to a flow injection biamperometric system for the determination of sulfite in beverage samples. Food Chem., 203: 183–189. doi:10.1016/j.foodchem.2016.01.125
  • Vidigal, S.S.M.P. and Rangel, A.O.S.S. (2015) A reagentless flow injection system for the quantification of ethanol in beverages based on the schlieren effect measurement. Microchem. J., 121: 107–111. doi:10.1016/j.microc.2015.02.006
  • Silva, C.R., Gomes, T.F., Barros, V.A.F. and Zagatto, E.A.G. (2013) A multi-purpose flow manifold for the spectrophotometric determination of sulphide, sulphite and ethanol involving gas diffusion: application to wine and molasses analysis. Talanta, 113: 118–122. doi:10.1016/j.talanta.2013.03.021
  • Pais, T.F.M., Vidigal, S.S.M.P., Tóth, I.V. and Rangel, A.O.S.S. (2013) Sequential injection system for the enzymatic determination of ethanol in alcoholic beverages with in-line dilution. Food Control, 30: 616–620. doi:10.1016/j.foodcont.2012.08.013
  • Lolic, A., Tripkovic, T., Baosic, R., Nikolic-Mandic, S. and Stanimirovic, B. (2012) Development of flow injection method for indirect copper determination with amperometric detection in drinking water samples. J. Serbian Chem. Soc., 77: 1641–1647. doi:10.2298/JSC120616090L
  • Santos, I.C., Mesquita, R.B.R., Galvis-Sanchez, A.C., Delgadillo, I. and Rangel, A.O.S.S. (2012) Development of a turbidimetric sequential injection system to monitor the codfish desalting process. Food Anal. Methods, 5: 287–295. doi:10.1007/s12161-011-9238-9
  • Kolev, S.D., Fernandes, P.R.L.V., Satinsky, D. and Solich, P. (2009) Highly sensitive gas-diffusion sequential injection analysis based on flow manipulation. Talanta, 79: 1021–1025. doi:10.1016/j.talanta.2009.02.014
  • Ohshima, T., Kagaya, S., Gemmei-Ide, M., Cattrall, R.W. and Kolev, S.D. (2014) The use of a polymer inclusion membrane as a sorbent for online preconcentration in the flow injection determination of thiocyanate impurity in ammonium sulfate fertilizer. Talanta, 129: 560–564. doi:10.1016/j.talanta.2014.06.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.