815
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Gas-Particle Cyclonic Separation Dynamics: Modeling and Characterization

, , &
Pages 112-142 | Received 20 Oct 2017, Accepted 04 Sep 2018, Published online: 25 Oct 2018

References

  • Hoffmann, A.C. and Stein, L.E. (2008) Gas Cyclones and Swirl Tubes: Principles, Design and Operation;second. Springer–Verlag Berlin: Heidelberg, Germany.
  • Cortés, C. and Gil, A. (2007) Modeling the gas and particle flow inside cyclone separators. Prog. Energy Combust. Sci., 33: 409–452. doi:10.1016/j.pecs.2007.02.001.
  • Galperin, V. and Shapiro, M. (2000) Cyclone as dust concentrations. J. Aerosol Sci., 30(S1): S897–S898. doi:10.1016/S0021-8502(99)80459-5.
  • Zhang, M., Qian, Z., Yu, H. and Wei, F. (2003) The solid flow structure in a circulating fluidized bed riser/downer of 0.42–m diameter. Powder Technol., 129: 46–52. doi:10.1016/S0032-5910(02)00130-4.
  • Chen, Y.M. (2006) Recent advances in FCC technology. Powder Technol., 163: 2–8. doi:10.1016/j.powtec.2006.01.001.
  • Tsai, C.J., Chen, S.C., Przekop, R. and Moskal, A. (2007) Study of an axial flow cyclone to remove nanoparticles in vacuum. Environ. Sci. Technol., 41: 1689–1695.
  • Thorn, R. (1998) Reengineering the cyclone separator. Met. Finish., 96(8): 34–35. doi:10.1016/S0026-0576(98)80589-8.
  • Hayward, C. (2001) Cyclone dust collectors: an underestimated technology? Filtr. Sep., 12: 20–21. doi:10.1016/S0015-1882(01)80579-6.
  • Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002) Transport Phenomena; 2nd. John Wiley & Sons: New York, USA.
  • Rosin, P., Rammler, E. and Intelman, W. (1932) Principles and limits of Cyclone Dust Removal. Z. Ver. Deut. Ing., 76: 443–447.
  • Van Tongeren, H. (1935) A modem dust collector. Mech. Eng, 57:753–757
  • Smith, J.L. (1962) An analysis of the Vortex flow in the cyclone separator. Trans. ASME, J. Basic Eng., 2: 609–618. doi:10.1115/1.3658722.
  • Jackson, R. (1963) Mechanical Equipment for Removing Grit and Dust from Gases; BCURA: Leatherhead, England.
  • Saxena, S.C., Henry, R.F. and Podolski, W.F. (1982) Technology atatus of particulate removal from HTHP combustion gases. Aerosol Sci. Technol., 1(2): 235–257. doi:10.1080/02786828208958591.
  • Leith, D. (1984) Cyclones in “Handbook of Power Science and Technology; Fayed, M.E. and Otten, L. eds. Ch. Vol. 16, Van Nostrand–Reinhold: New York, USA.
  • Ter Linden, A.J. (1949) Investigations into Cyclone Dust Collectors. Proc. Inst. Mech. Eng., 160(2): 233–240. doi:10.1243/PIME_PROC_1949_160_025_02.
  • Alexander, R.M. (1949) Fundamentals of cyclone design and operation. Proc. Aus. Inst. Min. Met. New Ser., 152–153: 203–228.
  • Patterson, P.A. and Munz, R.J. (1989) Cyclone collection efficiencies at very high temperatures. Can. J. Chem. Eng., 67(2): 321–328. doi:10.1002/cjce.v67:2.
  • Patterson, P.A. and Munz, R.J. (1996) Gas and particle flow patterns in cyclones at room and elevated temperatures. Can. J. Chem. Eng., 74: 213–221. doi:10.1002/cjce.v74:2.
  • Dietz, P.W. (1981) Collection efficiency of cyclone separators. AIChE J, 27: 888–892. doi:10.1002/(ISSN)1547-5905.
  • Reydon, R.F. and Gauvin, W.H. (1981) Theoretical and experimental studies in combined vortex flow. Can. J. Chem. Eng., 59: 14–23. doi:10.1002/cjce.5450590102.
  • Ogawa, A. (1984) Estimation of the collection efficiencies of three types of cyclone dust collectors from the standpoint of the flow patterns in the cylindrical cyclone dust collectors.”. Bull. JSME., 27(223): 64–69. doi:10.1299/jsme1958.27.64.
  • Ogawa, A. (1984) Separation of Particles from Air and Gases, I and II; CRC Press: Boca Raton, Florida, USA.
  • Ogawa, A. (1997) Mechanical separation process and flow patterns of cyclone dust collectors. Appl. Mech Rev., 50: 97–129. doi:10.1115/1.3101697.
  • Barth, W. (1956) Design and layout of the cyclone separator on the basis of new investigations. Brennst–Warme–Kraft., 8(1): 1–9.
  • Muschelknautz, E. (1972) Die Berechnung von Zyklonabscheidern fur Gase. Chem–Ing–Tech., 44: 63–71. doi:10.1002/cite.330440112.
  • Meissner, P. and Loffler, F. (1978) Zur Berechnung des Stromungsfeldes im Zyklonabscheider. Chem. Ing. Tech., 50: 471–476. doi:10.1002/cite.330500619.
  • Boysan, F., Ayers, W.H. and Swithenbank, A. (1982) A fundamental mathematical modelling approach for cyclone design. Trans. Inst. Chem. Eng., 60: 222–230.
  • Duggins, R.K. and Frith, P.C.W. (1987) Turbulence anisotropy in cyclones. Filtr. Sep., 24: 394–397.
  • Zhou, L.X. and Soo, S.L. (1990) Gas–solids flow and collection of solids in a cyclone separator. Powder Technol., 63: 45–53. doi:10.1016/0032-5910(90)80006-K.
  • Kessler, M. and Leith, D. (1991) Flow measurement and efficiency modeling of cyclones for particle collection. Aerosol Sci. Technol., 15(1): 8–18. doi:10.1080/02786829108959508.
  • Dyakowski, T. and Williams, R.A. (1993) Modelling turbulent flow within a small–diameter hydrocyclone. Chem. Eng. Sci., 48(6): 1143–1152. doi:10.1016/0009-2509(93)81042-T.
  • Griffiths, W.D. and Boysan, F. (1996) Computational fluid dynamics (CFD) and empirical modeling of a number of cyclone samplers. J. Aerosol Sci., 27(2): 281–304. doi:10.1016/0021-8502(95)00549-8.
  • Meier, H.F. and Mori, M. (1998) Gas–solid flow in cyclones: the Eulerian–Eulerian approach. Comput. Chem. Eng., 22(12): S641–S644. doi:10.1016/S0098-1354(98)00114-8.
  • Meier, H.F. and Mori, M. (1999) Anisotropic behavior of the Reynolds stress in gas and gas–solid flows in cyclones. Powder Technol., 101: 108–119. doi:10.1016/S0032-5910(98)00162-4.
  • Meier, H.F., Ropelato, K., Mori, M., Iess, K.J.J. and Forster, H. (2002) Computational fluid dynamics (CFD) for cyclone evaluation and design, Part 1. ZKG International, 55(4): 64–75.
  • Hoekstra, A.J., Derksen, J.J. and Van Den Akker, H.E.A. (1999) CFD Study on the performance of a high–efficiency gas cyclone. ASME, Pressure Vessels Piping Division (Publication II), 397: 219–226.
  • Hoekstra, A.J., Derksen, J.J. and Van Den Akker, H.E.A. (1999) An experimental and numerical study of turbulent swirling flow in gas cyclones. Chem. Eng. Sci., 54: 2055–2065. doi:10.1016/S0009-2509(98)00373-X.
  • Slack, M.D., Prasad, R.O., Bakker, A. and Boysan, F. (2000) Advances in cyclone modelling using unstructured grids. Trans. Inst. Chem. Eng., 78(A): 1098–1104. doi:10.1205/026387600528373.
  • Hogg, S. and Leschziner, M.A. (1989) Computation of highly swirling confined flow with a Reynolds Stress Turbulence Model. Aiaa J., 27: 57–63. doi:10.2514/3.10094.
  • Derksen, J.J. and van den Akker, H.E.A. (2000) Simulation of vortex core precession in a reverse–flow cyclone. AIChE J., 46: 1317–1331. doi:10.1002/(ISSN)1547-5905.
  • Modigell, M. and Weng, M. (2000) Pressure loss and separation characteristic calculation of a uniflow cyclone with a CFD Method. Chem. Eng. Technol., 23(9): 753–758. doi:10.1002/1521-4125(200009)23:9<753::AID-CEAT753>3.0.CO;2-D.
  • Pant, K., Crowe, C.T. and Irving, P. (2002) On the design of miniature cyclones for the collection of bioaerosols. Powder Technol., 125: 260–265. doi:10.1016/S0032-5910(01)00514-9.
  • Ma, L., Ingham, D.B. and Wen, X. (2000) Numerical modelling of the fluid and particle penetration through small sampling cyclones. J. Aerosol Sci., 31(9): 1097–1119. doi:10.1016/S0021-8502(00)00016-1.
  • Derksen, J.J. (2005) Simulations of confined turbulent vortex flow. Comput. Fluids, 34: 301–318. doi:10.1016/j.compfluid.2004.06.001.
  • Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G. (1992) Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A., 4: 1510–1520. doi:10.1063/1.858424.
  • Launder, B.E., Reece, G.J. and Rodi, W. (1975) Progress in the development of a Reynolds–stress turbulence closure, J. Fluid Mech., 68(3): 537–566. doi:10.1017/S0022112075001814.
  • Smagorinsky, J. (1963) General circulation experiments with the primitive equations, I. The Basic Experiment, Month. Wea. Rev., 91: 99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  • Shepherd, C.B. and Lapple, C.E. (1939) Flow pattern and pressure drop in cyclone dust collectors. Ind. Eng. Chem., 31(8): 972–984.
  • Wang, L.Z., Yan, Q.S. and Liu, L.L. (2001) Effect of a stick on the flow field in a cyclone and the pressure drop reduction mechanism. Aerosol. Sci. Technol., 35(5): 909–913. doi:10.1080/02786820126853.
  • Zhao, B. (2005) Experimental investigation of flow patterns in cyclones with conventional and symmetrical inlet geometries, Chem. Eng. Technol., 28(9): 969–972. doi:10.1002/ceat.200500088.
  • Cristea, D., Malfa, E., and Coghe, A. (1996) 3–D Numerical simulation and measurement of strongly swirling heavy dust–laden flow inside a cyclone separator. Eng. Turb. Model. Exp.,3: 851–860. doi:10.1016/B978-0-444-82463-9.50087-3.
  • Peng, W., Boot, P.J.A.J., Hoffmann, A.C., Dries, H.W.A., Kater, J. and Ekker, A. (2001) Flow in the inlet region in tangential inlet cyclones. Ind. Eng. Chem. Res., 40(23): 5649–5655. doi:10.1021/ie010226q.
  • Peng, W., Hoffmann, A.C., Boot, P.J.A.J., Udding, A., Dries, H.W.A., Ekker, A. and Kater, J. (2002) Flow pattern in reverse–flow centrifugal separators. Powder Technol., 127: 212–222. doi:10.1016/S0032-5910(02)00148-1.
  • Obermair, S., Gutschi, C., Woisetschlager, J. and Staudinger, G. (2005) Flow pattern and agglomeration in the dust outlet of a gas cyclone investigated by Phase Doppler Anemometry. Powder Technol., 156(1): 34–42. doi:10.1016/j.powtec.2005.05.044.
  • Liu, Z., Jiao, J., Zheng, Y. and Zhang, Q. (2006) Investigation of turbulence characteristics in a gas cyclone by stereoscopic PIV. AIChE J., 52: 4150–4160. doi:10.1002/aic.11013.
  • Liu, Z., Zheng, Y., Jia, L., Jiao, J. and Zhang, Q. (2006) Stereoscopic PIV studies on the swirling flow structure in a gas cyclone. Chem. Eng.Sci., 61: 4252–4261. doi:10.1016/j.ces.2006.01.024.
  • Kimura, N., Hasegawa, Z. and Akamatsu, T. (1972) Dust collection characteristics of collectron, J. Soc. Powder Technol. Jpn., 9(6): 392–398.
  • Leith, D. and Mehta, D. (1973) Cyclone performance design, Atmos. Environ, 7: 527–549.
  • Svarovsky, L. (1981) Solid–Gas Separation; Elsevier Scientific Publishing: Amsterdam, The Netherlands.
  • Shalaby, H., Pachler, K., Wozniak, K. and Wozniak, G. (2005) Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Number. Meth. Fluids, 48: 1175–1197. doi:10.1002/fld.942.
  • Derksen, J.J., van den Akker, H.E.A. and Sundaresan, S. (2008) Two-way coupled large eddy simulations of the gas–solid flow in cyclone separators. AIChE J, 54(4): 872–885. doi:10.1002/(ISSN)1547-5905.
  • Gronald, G. and Derksen, J.J. (2011) Simulating turbulent swirling flow in a gas cyclone: a comparison of various modeling approaches. Powder Technol., 205(1): 160–171. doi:10.1016/j.powtec.2010.09.007.
  • Jang, K., Lee, G.G. and Kang, Y.H. (2018) Evaluation of the turbulence models for gas flow and particle transport in URANS and LES of a cyclone separator. Computers & Fluids, in press. doi:10.1016/j.compfluid.2018.04.032.
  • Bryant, H.S., Silverman, R.W. and Zenz, F.A. (1983) How dust in gas affects cyclone pressure drop. Hydrocarbon Proc., 62(6): 87–90.
  • Mothes, H. and Löffler, F. (1988) Prediction of particle removal in cyclone separators. Int. Chem. Eng., 23: 231–240.
  • Z., Wu, X., and Shi, M. (1991) Experimental research on the natural turning length of the cyclone. Proc. Filtech Europa Conference, The Filtration Society: Vol. 2, Karlsruhe, Germany, 583–589.
  • Hoffmann, A.C., Groot, M.D., Peng, W., Dries, H.W.A. and Kater, J. (2001) Advantages and risks in increasing cyclone separator length. AIChE J., 47: 2452–2460. doi:10.1002/(ISSN)1547-5905.
  • Qian, F. and Zhang, M. (2005) Study of the natural vortex length of a cyclone with response surface methodology. Comput. Chem. Eng., 29: 2155–2162. doi:10.1016/j.compchemeng.2005.07.011.
  • Maclean, J.P., Brown, J.D., Hoy, H.D. and Cantwell, J.E. (1978) UK Patent Application GB 2011285A.
  • Li, X., Song, J., Sun, G., Jia, M., Yan, C., Yang, Z. and Wei, Y. (2016) Experimental study on natural vortex length in a cyclone separator. Can. J. Chem. Eng., 94: 2373–2379. doi:10.1002/cjce.22598.
  • Hoffmann, A.C., Jonge, R.D., Arends, H. and Hanrats, C. (1995) Evidence of the natural vortex length and its effect on the separation efficiency of gas cyclones. Filt. Sep., 32: 799–804. doi:10.1016/S0015-1882(97)84131-6.
  • Kim, J.C. and Lee, K.W. (1990) Experimental study of particle collection by small cyclones. Aerosol Sci. Technol., 12: 1003–1015. doi:10.1080/02786829008959410.
  • Avci, A. and Karagoz, I. (2003) Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. J. Aerosol Sci., 34: 937–955. doi:10.1016/S0021-8502(03)00054-5.
  • Altmeyer, S., Mathieu, V., Jullemier, S., Contal, P., Midoux, N., Rode, S. and Leclerc, J.P. (2004) Comparison of different models of cyclone prediction performance for various operating conditions using a general software. Chem. Eng. Proc., 43: 511–522. doi:10.1016/S0255-2701(03)00079-5.
  • Elsayed, K. and Lacor, C. (2013) The effect of cyclone vortex finder dimensions on the flow pattern and performance. Comput. Fluid., 71: 224–239. doi:10.1016/j.compfluid.2012.09.027.
  • Avci, A., Karagoz, I. and Surmen, A. (2013) Development of a new method for evaluating vortex length in reversed flow cyclone separators. Powder Technol., 235: 460–466. doi:10.1016/j.powtec.2012.10.058.
  • Licht, W. (1988) Air Pollution Control Engineering: Basic Calculations for Particulate Collection; second. ed. Dekker, M. Inc–New York: USA.
  • Karagoz, I. and Avci, A. (2005) Modelling of the pressure drop in tangential inlet Cyclone Separators, Aerosol Sci. Technol, 39(9): 857–865.
  • Shepherd, C.B. and Lapple, C.E. (1940) Flow pattern and pressure drop in cyclone dust collectors: cyclone without inlet vane. Ind. Eng. Chem., 32(9): 1246–1248. doi:10.1021/ie50369a042.
  • First, M.W. (1949) Cyclone dust collector design. Am. Soc. Mech. Eng., 49(A): 127–132.
  • Stairmand, C.J. (1951) Design and performance of cyclone separators. Trans. Inst. Chem. Eng., 29: 356–383.
  • Zhao, B. (2004) Theoretical approach to pressure drop across cyclone separators. Chem. Eng. Technol., 27(10): 1105–1108. doi:10.1002/ceat.200402089.
  • Chen, J. and Shi, M. (2007) A universal model to calculate cyclone pressure drop. Powder Technol., 171: 184–191. doi:10.1016/j.powtec.2006.09.014.
  • Avci, A. and Karagoz, I. (2001) Theoretical investigation of pressure losses in cyclone separators. Int. Commun. Heat Mass Trans., 28(1): 107–117. doi:10.1016/S0735-1933(01)00218-4.
  • Casal, J. and Martinez–Bennet, J.M. (1983) A batter way to calculate cyclone pressure drop. Chem. Eng., 90(3): 99–100.
  • Dirgo, J. (1988) Relationships between cyclone dimensions and performance, Ph.D. Thesis, Harvard University, Cambridge, MA, USA. .
  • Ramachandran, G., Leith, D., Dirgo, J. and Feldman, H. (1991) Cyclone optimization based on a new empirical model for pressure drop. Aerosol Sci. Technol., 15: 135–148. doi:10.1080/02786829108959520.
  • Gimbun, J., Chuah, T.G., Fakhru’l-Razi, A. and Choong, T.S.Y. (2005) The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study. Chem. Eng. Proc., 44: 7–12. doi:10.1016/j.cep.2004.03.005.
  • Zhao, B. and Su, Y. (2010) Artificial neural network–based modeling of pressure drop coefficient for cyclone separators. Chem. Eng. Res. Des., 88: 606–613. doi:10.1016/j.cherd.2009.11.010.
  • Zhao, B. (2009) Modeling pressure drop coefficient for cyclone separators: A support vector machine approach. Chem. Eng. Sci., 64: 4131–4136. doi:10.1016/j.ces.2009.06.017.
  • Muschelknautz, E. (1970) Auslegung von Zyklonabscheidern in der technischen Praxis. Staub– Reinhaltung der Luft, 30(5): 187–195.
  • Briggs, L.W. (1946) Effect of dust concentration on cyclone performance. Trans. Am. Inst. Chem. Eng., 42: 511–526.
  • Comas, M., Comas, J., Chetrit, C. and Casal, J. (1991) Cyclone pressure drop and efficiency with and without an inlet vane. Powder Technol., 66: 143–148. doi:10.1016/0032-5910(91)80095-Z.
  • Masin, J.G. and Koch, W.H. (1986) Cyclone efficiency and pressure drop correlations in oil shale retorts. Environ. Prog., 5(2): 116–120. doi:10.1002/ep.670050213.
  • Iozia, D.L. and Leith, D. (1989) Optimizing cyclone design and performance. Filt. Sep., 24(4): 272–274.
  • Stern, A.C., Caplan, K.J. and Bush, P.D. (1977) Cyclone dust collectors. Air Pollution; Caplan, K.J.; ed. 3rd. Academic Press: New York, 21–26.
  • Caplan, K.J. (1977) Air Pollution;3rd. Academic Press: New York, USA.
  • Leith, D, Dirgo, J.A., and Davis, W.T. (1986) “Control devices: Centrifugal force and gravity, filtration, and dry flue gas scrubbing”, in Air Pollution, Vol VII, 3rd ed., Arthur C. Stern, ed., Academic Press, New York, 53–58.
  • Bryant, H.S., Silverman, R.W. and Zenz, F.A. (1983) How dust in gas affects cyclone pressure drop. Hydrocarbon Processing, 62: 87–90.
  • Swift, P. (1986). Empirical approach to cyclone design and application. Filt. & Sep., 23(1): 24–27.
  • Beeckmans, J.M. and Morin, B. (1987) The effect of particulate solids on pressure drop across a cyclone. Powder Technol., 52: 227–232. doi:10.1016/0032-5910(87)80109-2.
  • Fassani, F.L. and Goldstein, L., Jr. (2000) A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency. Powder Technol., 107: 60–65. doi:10.1016/S0032-5910(99)00091-1.
  • Sykes, D., Cumming, R.H., Grieveson, L. and Rowell, F.J. (2000) Measurement and modeling of fluid loss in a cyclone. J. Aerosol Sci., 31(S1): 588–589. doi:10.1016/S0021-8502(00)90095-8.
  • Zhu, Z., Na, Y. and Lu, Q. (2008) Pressure drop in cyclone separator at high pressure. J. Therm. Sci., 17(3): 275–280. doi:10.1007/s11630-008-0275-7.
  • Souza, F.J.D., Salvo, R.D.V. and Martins, D.A.D.M. (2012) Large Eddy Simulation of the gas–particle flow in cyclone separators. Sep. Purif. Technol., 94: 61–70. doi:10.1016/j.seppur.2012.04.006.
  • Safikhani, H. (2016) Modeling and multi–objective Pareto optimization of new cyclone separators using CFD, ANNs and NSGA II algorithm. Adv. Powder Technol., 27: 2277–2284. doi:10.1016/j.apt.2016.08.017.
  • Ravi, G., Gupta, S.K. and Ray, M.B. (2000) Multiobjective optimization of cyclone separators using genetic algorithm. Ind. Eng. Chem. Res, 39: 4272–4286. doi:10.1021/ie990741c.
  • Hsiao, T.C., Huang, S.H., Hsu, C.W., Chen, C.C. and Chang, P.K. (2015) Effects of the geometric configuration on cyclone performance. J. Aerosol Sci, 86: 1–12. doi:10.1016/j.jaerosci.2015.03.005.
  • Lapple, C.E. (1950) Gravity and centrifugal separation. Ind. Hyg. Quart, 11: 40–48.
  • Iozia, D.L. and Leith, D. (1989) Effect of cyclone dimensions on gas flow pattern and collection efficiency. Aerosol Sci. Technol., 10: 491–500. doi:10.1080/02786828908959289.
  • Dring, R.P. and Suo, M. (1978) Particle trajectories in swirling flows. J. Energ, 2: 232–237. doi:10.2514/3.47974.
  • Burkholz, A. (1985) Approximation formulae for particle separation in cyclones. Ger. Chem. Eng., 8: 351–358.
  • Buttner, H. (1988) Size separation of particles from aerosol samples using impactors and cyclones. Part. Part. Syst. Charact, 5: 87–93. doi:10.1002/ppsc.19880050207.
  • Buttner, H. (1999) Dimensionless representation of particle separation characteristic of cyclones. J. Aerosol Sci, 30: 1291–1302. doi:10.1016/S0021-8502(99)00047-6.
  • John, W. and Reischl, G.P. (1980) A cyclone for size–selective sampling of ambient air. J. Air Pollut. Control Assoc, 30: 872–876. doi:10.1080/00022470.1980.10465122.
  • Kenny, L.C. and Gussman, R.A. (1995) Characterisation and modelling of a family of Cyclone Aerosol Preseparators. J. Aerosol Sci, 28: 677–688. doi:10.1016/S0021-8502(96)00455-7.
  • Moore, M.E. and McFarland, A.R. (1990) Design of Stairmand–type sampling cyclones. Am. Ind. Hyg. Assoc. J.,51: 151–159. doi:10.1080/15298669091369475.
  • Overcamp, T.J. and Scarlett, S.E. (1993) Effect of Reynolds number on Stokes number of cyclones. Aerosol Sci. Technol., 19: 362–370. doi:10.1080/02786829308959643.
  • Zhu, Y. and Lee, K.W. (1999) Experimental study on small cyclones operating at high flowrates. J. Aerosol Sci., 30: 1303–1315. doi:10.1016/S0021-8502(99)00024-5.
  • Saltzman, B.E. and Hochstrasser, J.M. (1983) Design and performance of miniature cyclones for respirable aerosol sampling. Environ. Sci. Technol., 17: 418–424. doi:10.1021/es00113a011.
  • Moore, M.E. and McFarland, A.R. (1993) Performance modeling of single–inlet aerosol sampling cyclones. Environ. Sci. Technol., 27: 1842–1848. doi:10.1021/es00046a012.
  • Moore, M.E. and McFarland, A.R. (1996) Design methodology for multiple inlet air sampling cyclones. Environ. Sci. Technol., 30: 271–276. doi:10.1021/es950302e.
  • Kuo, K.Y. and Tsai, C.J. (2001) On the theory of particle cutoff diameter and collection efficiency of cyclones. Aerosol Air Quality Res., 1: 47–56. doi:10.4209/aaqr.2001.06.0005.
  • Lidén, G. and Gudmundsson, A. (1997) Semi–empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design. J Aerosol Sci., 28: 853–874. doi:10.1016/S0021-8502(96)00479-X.
  • Beekmans, J.M. and Kim, C.J. (1977) Analysis of the efficiency of reverse flow cyclones. Can. J. Chem. Eng., 55: 640–643. doi:10.1002/cjce.5450550602.
  • Dirgo, J. and Leith, D. (1985) Cyclone collection efficiency: comparison of experimental results with theoretical predictions. Aerosol Sci. Technol., 4: 401–415. doi:10.1080/02786828508959066.
  • Dirgo, J. and Leith, D. (1985) Performance of theoretically optimised cyclones. Filtr. Sep., 22: 119–125.
  • Iozia, D.L. and Leith, D. (1990) The Logistic Function and Cyclone Fractional Efficiency. Aerosol Sci. Technol., 12: 598–606. doi:10.1080/02786829008959373.
  • Xiang, R., Park, S.H. and Lee, K.W. (2001) Effects of cone dimension on cyclone performance. J. Aerosol Sci., 32: 549–561. doi:10.1016/S0021-8502(00)00094-X.
  • Zhao, B., Shen, H. and Kang, Y. (2004) Development of a symmetrical spiral inlet to improve cyclone separator performance. Powder Technol., 145: 47–50. doi:10.1016/j.powtec.2004.06.001.
  • Elsayed, K. and Lacor, C. (2011) The effect of cyclone inlet dimensions on the flow pattern and performance. Appl. Math. Model., 35: 1952–1968. doi:10.1016/j.apm.2010.11.007.
  • Xiang, R. and Lee, K.W. (2005) Numerical study of flow field in cyclones of different height. Chem. Eng. Proc., 44: 877–883. doi:10.1016/j.cep.2004.09.006.
  • Azadi, M. and Mohebbi, A. (2010) A CFD study of the effect of cyclone size on its performance parameters. J. Hazard. Mater., 182: 835–841. doi:10.1016/j.jhazmat.2010.06.115.
  • Zhao, B. and Su, Y. (2016) Cyclone performances depend on multiple factors: comments on “A CFD study of the effect of cyclone size on its performance parameters” by Mehdi Azadi et al. (2010). J. Hazard. Mater., 303: 174–176. doi:10.1016/j.jhazmat.2015.03.050.
  • Lapple, C.E. (1951) Processes use many collector types. Chem. Eng., 58(5): 144–151.
  • Chu, K.W., Wang, B., Xu, D.L., Chen, Y.X. and Yu, A.B. (2011) CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chem. Eng. Sci., 66: 834–847. doi:10.1016/j.ces.2010.11.026.
  • Sproull, W.T. (1970) Air Pollution and Its Control; Exposition Press: New York, USA.
  • Leith, D. and Licht, W. (1972) The collection efficiency of cyclone type particle collectors: a new theoretical approach. Air Pollution and Its Control. AIChE Symp. Ser., 68(126): 196–206.
  • Clift, R., Ghadiri, M. and Hoffman, A.C. (1991) A critique of two models for cyclone performance. AIChE J., 37(2): 285–289. doi:10.1002/(ISSN)1547-5905.
  • Zhao, B. (2012) Prediction of gas–particle separation efficiency for cyclones: a time–of–flight model. Sep. Purif. Technol., 85: 171–177. doi:10.1016/j.seppur.2011.10.006.
  • Jiao, J. and Zheng, Y. (2007). A multi-region model for determining the cyclone efficiency. sep. Purif. Technol., 53(3): 266–273. doi: 10.1016/j.seppur.2006.07.011.
  • Kim, W.S. and Lee, J.W. (1997) Collection efficiency model based on boundary–layer characteristics for cyclones. AIChE J., 43(10): 2446–2455. doi:10.1002/(ISSN)1547-5905.
  • Kim, C.H. and Lee, J.W. (2001) A new efficiency model for small cyclones considering the boundary–layer effect. J. Aerosol Sci, 32: 251–269. doi:10.1016/S0021-8502(00)00078-1.
  • Zhao, B. (2010) Development of a dimensionless logistic model for predicting cyclone separation efficiency. Aerosol Sci. Technol., 44: 1105–1112. doi:10.1080/02786826.2010.512027.
  • Zhao, B., Su, Y. and Zhang, J. (2006) Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration. Chem. Eng. Res. Des., 84(A12): 1158–1165. doi:10.1205/cherd06040.
  • Li, E. and Wang, Y. (1989) A new theory of cyclone separators. AIChE J., 35(4): 666–669. doi:10.1002/aic.690350419.
  • Li, S., Yang, H., Zhang, H., Yang, S., Lu, J. and Yue, G. (2009) Measurements of solid concentration and particle velocity distributions near the wall of a cyclone. Chem. Eng. J., 150: 168–173. doi:10.1016/j.cej.2008.12.019.
  • Salcedo, R.L. (1993) Collection efficiencies and particle size distributions from sampling cyclones–comparison of recent theories with experimental data. Can. J. Chem. Eng., 71(1): 20–27. doi:10.1002/cjce.5450710104.
  • Zhao, B. and Su, Y. (2006) Particle collection theory for cyclone separators: summary and comparison. Part. Part. Syst. Char., 23(6): 484–488. doi:10.1002/ppsc.200400955.
  • Salcedo, R.L. and Coelho, M.A. (1999) Turbulent dispersion coefficients in cyclone flow–an empirical approach. Can. J. Chem. Eng., 77(4): 609–617. doi:10.1002/cjce.5450770401.
  • Haig, C.W., Hursthouse, A., McIlwain, S. and Sykes, D. (2014) The effect of particle agglomeration and attrition on the separation efficiency of a Stairmand cyclone. Powder Technol., 258: 110–124. doi:10.1016/j.powtec.2014.03.008.
  • Xue, X., Sun, G., Wan, G. and Shi, M. (2007) Numerical simulation of particle concentration in a gas cyclone separator. Petro. Sci., 4(3): 76–83. doi:10.1007/s12182-007-0013-x.
  • Wan, G., Sun, G., Xue, X. and Shi, M. (2008) Solids concentration simulation of different size particles in a cyclone separator. Powder Technol., 183: 94–104. doi:10.1016/j.powtec.2007.11.019.
  • Derksen, J.J. (2003) Separation performance predictions of a Stairmand high-efficiency cyclone. AIChE J, 49: 1359–1371. doi:10.1002/(ISSN)1547-5905.
  • Elsayed, K. and Lacor, C. (2010) Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations. Chem. Eng. Sci., 65(22): 6048–6058. doi:10.1016/j.ces.2010.08.042.
  • Elsayed, K. and Lacor, C. (2011) Modeling, analysis and optimization of air cyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technol., 212(1): 115–133. doi:10.1016/j.powtec.2011.05.002.
  • Elsayed, K. and Lacor, C. (2012) Modeling and Pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms. Powder Technol., 217: 84–99. doi:10.1016/j.powtec.2011.10.015.
  • Singh, P., Couckuyt, I., Elsayed, K., Deschrijver, D. and Dhaene, T. (2015) Shape optimization of a cyclone separator using multi-objective surrogate-based optimization. Appl. Math. Model., 40(5–6): 4248–4259. doi:10.1016/j.apm.2015.11.007.
  • Elsayed, K. (2015) Optimization of the cyclone separator geometry for minimum pressure drop using Co-Kriging. Powder Technol., 269: 409–424. doi:10.1016/j.powtec.2014.09.038.
  • Brar, L.S. and Elsayer, K. (2017) Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network. Powder Technol, 311: 465–483. doi:10.1016/j.powtec.2017.02.004.
  • Luciano, R.D., Silva, B.L., Rosa, L.M. and Meier, H.F. (2018) Multi-objective optimization of cyclone separators in series based on computational fluid dynamics. Powder Technol, 325: 452–466. doi:10.1016/j.powtec.2017.11.043.
  • Cundall, P.A. and Strack, O.D.L. (1979) Discrete numerical model for granular assemblies. Geotechnique, 29: 47–65. doi:10.1680/geot.1979.29.1.47.
  • Xu, B.H. and Yu, A.B. (1997) Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci., 52: 2785–2809. doi:10.1016/S0009-2509(97)00081-X.
  • Zhou, Z.Y., Kuang, S.B., Chu, K.W. and Yu, A.B. (2010) Assessments of CFD–DEM models in particle–fluid flow modelling. J. Fluid Mech., 661: 482–510. doi:10.1017/S002211201000306X.
  • Chu, K.W., Wang, B., Yu, A.B. and Vince, A. (2009) CFD-DEM modelling of multiphase flow in dense medium cyclones. Powder Technol, 193: 235–247. doi:10.1016/j.powtec.2009.03.015.
  • Chu, K., Chen, J. and Yu, A. (2016) Applicability of a coarse-grained CFD–DEM model on dense medium cyclone. Miner. Eng., 90: 43–54. doi:10.1016/j.mineng.2016.01.020.
  • Wang, B., Chu, K.W., Yu, A.B. and Vince, A. (2009) Numerical studies of the effects of medium properties in dense medium cyclone operations. Miner. Eng., 22: 931–943. doi:10.1016/j.mineng.2009.03.019.
  • Chu, K.W., Wang, B., Yu, A.B. and Vince, A. (2012) Computational study of the multiphase flow in a dense medium cyclone: effect of particle density. Chem. Eng. Sci., 73: 123–139. doi:10.1016/j.ces.2012.01.007.
  • Chu, K.W., Kuang, S.B., Yu, A.B. and Vince, A. (2012) Particle scale modelling of the multiphase flow in a dense medium cyclone: effect of fluctuation of solids flowrate. Miner. Eng., 33: 34–45. doi:10.1016/j.mineng.2011.12.011.
  • Chu, K.W., Wang, B., Yu, A.B. and Vince, A. (2012) Particle scale modelling of the multiphase flow in a dense medium cyclone: effect of vortex finder outlet pressure. Miner. Eng., 31: 46–58. doi:10.1016/j.mineng.2011.11.011.
  • Chu, K.W., Chen, J., Wang, B., Yu, A.B., Vince, A., Barnett, G.D. and Barnett, P.J.(2017) Understand solids loading effects in a dense medium cyclone: effect of particle size by a CFD-DEM method. Powder Technol., (320): 594–609. doi:10.1016/j.powtec.2017.07.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.