2,677
Views
95
CrossRef citations to date
0
Altmetric
Reviews

Lipases: From Production to Applications

, &
Pages 143-158 | Received 23 Jun 2017, Accepted 26 Nov 2018, Published online: 11 Jan 2019

REFERENCES

  • Santos, K.C., Cassimiro, D.M.J., Avelar, M.H.M., Hirata, D.B., de Castro, H.F., and Fernández-Lafuente, R. (2013) Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Ind. Crop. Prod., 49: 462–470. doi:10.1016/j.indcrop.2013.05.035
  • Nomura, D.K. and Casida, J.E. (2016) Lipases and their inhibitors in health and disease. Chem. Biol. Interact., 259(Pt B): 211–222. doi:10.1016/j.cbi.2016.04.004
  • Borrelli, G.M. and Trono, D. (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int. J. Mol. Sci., 16(9): 20774–20840. doi:10.3390/ijms160920774
  • Molinari, F., Romano, D., Villa, R., and Clark, J. (2011) Comprehensive Biotechnology. In Production of Fine Chemicals by (Bio)Transformation of Agro-Food Byproducts and Wastes, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington, MA, USA. 547–556.
  • Kilara, A. (2011) Encyclopedia of Dairy Sciences. In Enzymes Exogenous to Milk in Dairy Technology | Lipases A2 – Fuquay, 2nd ed.; John, W., ed.; Academic Press: San Diego, CA, USA. 284–288.
  • Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., and Fernandez-Lafuente, R. (2015) Strategies for the one-step immobilization – purification of enzymes as industrial biocatalysts. Biotechnol. Adv., 33(5): 435–456. doi:10.1016/j.biotechadv.2015.03.006
  • Hou, C.T. and Shimada, Y. (2009) Encyclopedia of Microbiology. In Lipases A2 – Schaechter, 3rd ed.; Moselio, R., ed.; Academic Press: Oxford, UK. 385–392.
  • Zhu, D., Wu, Q., and Wang, N. (2011). Industrial Enzymes. In Comprehensive Biotechnology of Industrial Enzymes, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington, MA, USA. 3–13.
  • Kwon, C.W., Park, K.M., Choi, S.J., and Chang, P.S. (2015) A reliable and reproducible method for the lipase assay in an AOT/isooctane reversed micellar system: modification of the copper-soap colorimetric method. Food Chem., 182: 236–241. doi:10.1016/j.foodchem.2015.02.145
  • Zhou, Y.-J., Hu, C.-L., Wang, N., Zhang, W.-W., and Yu, X.-Q. (2013) Purification of porcine pancreatic lipase by aqueous two-phase systems of polyethylene glycol and potassium phosphate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 926: 77–82. doi:10.1016/j.jchromb.2013.03.005
  • Zarai, Z., Ali, M.B., Fendri, A., Louati, H., Mejdoub, H., and Gargouri, Y. (2012) Purification and biochemical properties of Hexaplex trunculus digestive lipase. Process Biochem, 47(12): 2434–2439. doi:10.1016/j.procbio.2012.10.004
  • Rivera-Pérez, C., Del Toro, M.D.L.Á.N., and García-Carreño, F. (2011) Purification and characterization of an intracellular lipase from pleopods of whiteleg shrimp (Litopenaeus vannamei). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 158(1): 99–105. doi:10.1016/j.cbpb.2010.10.004
  • Yang, W., He, Y., Xu, L., Zhang, H., and Yan, Y. (2016) A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J. Mol. Catal. B Enzym., 126: 76–89. doi:10.1016/j.molcatb.2016.02.005
  • Volpato, G., Filice, M., Ayub, M.A.Z., Guisan, J.M., and Palomo, J.M. (2010) Single-step purification of different lipases from Staphylococcus warneri. J. Chromatogr. A., 1217(4): 473–478. doi:10.1016/j.chroma.2009.11.055
  • Sharma, D., Kumbhar, B.K., Verma, A.K., and Tewari, L. (2014) Optimization of critical growth parameters for enhancing extracellular lipase production by alkalophilic Bacillus sp. Biocatal. Agric. Biotechnol., 3(4): 205–211. doi:10.1016/j.bcab.2014.04.004
  • Shakila Begam, M., Stanly Pradeep, F., and Pradeep, B.V. (2012) Production, purification, characterization and applications of lipase from Serratia marcescens MBB05. Asian J. Pharm. Clin. Res., 5(SUPPL.4): 237–245.
  • Ramakrishnan, V., Goveas, L.C., Suralikerimath, N., Jampani, C., Halami, P.M., and Narayan, B. (2016) Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase system (ATPS) and its biochemical characterization. Biocatal. Agric. Biotechnol., 6: 19–27. doi:10.1016/j.bcab.2016.02.005
  • Gururaj, P., Ramalingam, S., Nandhini Devi, G., and Gautam, P. (2016) Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. Braz. J. Microbiol., 47(3): 647–657. doi:10.1016/j.bjm.2015.04.002
  • Wolski, E., Menusi, E., Remonatto, D., Vardanega, R., Arbter, F., and Rigo, E. (2009) Partial characterization of lipases produced by a newly isolated Penicillium sp in solid state and submerged fermentation: a comparative study. Lwt-Food Sci. Technol., 42(9): 1557–1560. doi:10.1016/j.lwt.2009.04.006
  • Toscano, L., Montero, G., Cervantes, L., Stoytcheva, M., Gochev, V., and Beltran, M. (2013) Production and partial characterization of extracellular lipase from Trichoderma harzianum by solid-state fermentation. Biotechnol. Biotec. Eq., 27(3): 3776–3781. doi:10.5504/BBEQ.2012.0140
  • Taskin, M., Ucar, M.H., Unver, Y., Kara, A.A., Ozdemir, M., and Ortucu, S. (2016) Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatal. Agric. Biotechnol., 8: 97–103. doi:10.1016/j.bcab.2016.08.009
  • Smaniotto, A., Skovronski, A., Rigo, E., Tsai, S.M., Durrer, A., and Foltran, L.L. (2014) Concentration, characterization and application of lipases from Sporidiobolus pararoseus strain. Braz. J. Microbiol., 45(1): 294–301.
  • Salihu, A., Alam, M.Z., AbdulKarim, M.I., and Salleh, H.M. (2011) Effect of process parameters on lipase production by Candida cylindracea in stirred tank bioreactor using renewable palm oil mill effluent based medium. J. Mol. Catal. B Enzym., 72(3–4): 187–192. doi:10.1016/j.molcatb.2011.06.004
  • Romdhan, I.-B.-B., Fendri, A., Frikha, F., Gargouri, A., and Belghith, H. (2012) Purification, physico-chemical and kinetic properties of the deglycosylated Talaromyces thermophilus lipase. Int. J. Biol. Macromol., 51(5): 892–900. doi:10.1016/j.ijbiomac.2012.06.034
  • Ramos, E.Z., Júnior, R.H.M., de Castro, P.F., Tardioli, P.W., Mendes, A.A., and Fernandéz-Lafuente, R. (2015) Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: characterization of the catalytic properties in hydrolysis and esterification reactions. J. Mol. Catal. B Enzym., 118: 43–51. doi:10.1016/j.molcatb.2015.05.009
  • Papagora, C., Roukas, T., and Kotzekidou, P. (2013) Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food Bioprod. Process., 91(4): 413–420. doi:10.1016/j.fbp.2013.02.008
  • Liu, Z., Chi, Z., Wang, L., and Li, J. (2008) Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochem. Eng. J., 40(3): 445–451. doi:10.1016/j.bej.2008.01.014
  • Duarte, A.W.F., Lopes, A.M., Molino, J.V.D., Pessoa, A., and Sette, L.D. (2015) Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Sep. Purif. Technol., 156(Part 2): 215–225. doi:10.1016/j.seppur.2015.10.001
  • Andrade, M.M., Barbosa, A.M., Bofinger, M.R., Dekker, R.F., Messias, J.M., and Guedes, C.L. (2013) Lipase production by Botryosphaeria ribis EC-01 on soybean and castorbean meals: optimization, immobilization, and application for biodiesel production. Appl. Biochem. Biotechnol., 170(7): 1792–1806. doi:10.1007/s12010-013-0309-9
  • Patui, S., Clincon, L., Peresson, C., Zancani, M., Conte, L., and Del Terra, L. (2014) Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination. Plant Sci., 219–220: 19–25. doi:10.1016/j.plantsci.2013.12.014
  • Jung, H. and Moon, S. (2013) Purification, distribution, and characterization activity of lipase from oat seeds (Avena sativa L.). J. Korean Soc. Appl. Biol. Chem., 56(6): 639–645. doi:10.1007/s13765-013-3119-4
  • Hidayat, C., Hastuti, P., Utazmi, S., Wardhani, A.K., and Pradipta, D.S. (2014) Enhancing indigenous lipase activity of germinated Jatropha curcas L. seeds for the enzymatic degradation of phorbol ester. Biocatal. Agric. Biotechnol., 3(3): 71–76. doi:10.1016/j.bcab.2014.02.001
  • Amid, M., Manap, M.Y., Hussin, M., and Mustafa, S. (2015) A novel aqueous two phase system composed of surfactant and xylitol for the purification of lipase from pumpkin (Cucurbita moschata) seeds and recycling of phase components. Mol., 20(6): 11184–11201. doi:10.3390/molecules200611184
  • Moussavou Mounguengui, R.W., Brunschwig, C., Baréa, B., Villeneuve, P., and Blin, J. (2013) Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Prog. Energy Combust. Sci., 39(5): 441–456. doi:10.1016/j.pecs.2013.05.003
  • De Sousa, J.S., Cavalcanti-Oliveira, E.D.A., Aranda, D.A.G., and Freire, D.M.G. (2010) Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. J. Mol. Catal. B Enzym., 65(1–4): 133–137. doi:10.1016/j.molcatb.2010.01.003
  • You, P., Su, E., Yang, X., Mao, D., and Wei, D. (2011) Carica papaya lipase-catalyzed synthesis of terpene esters. J. Mol. Catal. B Enzym., 71(3–4): 152–158. doi:10.1016/j.molcatb.2011.04.012
  • Nanssou Kouteu, P.A., Baréa, B., Barouh, N., Blin, J., and Villeneuve, P. (2016) Lipase activity of tropical oilseed plants for ethyl biodiesel synthesis and their typo- and regioselectivity. J. Agric. Food. Chem., 64(46): 8838–8847. doi:10.1021/acs.jafc.6b03674
  • Tavares, F., Petry, J., Sackser, P.R., Borba, C.E., and Silva, E.A. (2018) Use of castor bean seeds as lipase source for hydrolysis of crambe oil. Ind. Crop. Prod., 124: 254–264. doi:10.1016/j.indcrop.2018.06.073
  • Mehdi, W.A., Mehde, A.A., Özacar, M., and Özacar, Z. (2018) Characterization and immobilization of protease and lipase on chitin-starch material as a novel matrix. Int. J. Biol. Macromol., 117: 947–958. doi:10.1016/j.ijbiomac.2018.04.195
  • Wardhani, A.K., Hidayat, C., and Hastuti, P. (2016) Enzymatic phorbol esters degradation using the germinated Jatropha curcas seed lipase as biocatalyst: optimization process conditions by response surface methodology. Bull. Chem. React. Eng., 11(3): 346–353. doi:10.9767/bcrec.11.3.574.346-353
  • Mendes, A.A., Oliveira, P.C., and De Castro, H.F. (2012) Properties and biotechnological applications of porcine pancreatic lipase. J. Mol. Catal. B Enzym., 78: 119–134. doi:10.1016/j.molcatb.2012.03.004
  • Carvalho, A.C.L.D., Fonseca, T.D., de Mattos, M.C., de Oliveira, M.D.F., de Lemos, T.L.G., and Molinari, F. (2015) Recent advances in lipase-mediated preparation of pharmaceuticals and their intermediates. Int. J. Mol. Sci., 16(12): 29682–29716. doi:10.3390/ijms161226191
  • Badia-Villanueva, M., Carulla, P., Carrascal, M., Abián, J., Llobera, M., and Casanovas, A. (2014) Lipoprotein lipase isoelectric point isoforms in humans. Biochem. Biophys. Res. Commun., 445(2): 480–485. doi:10.1016/j.bbrc.2014.02.028
  • Scherer, R.P., Dallago, R.L., Penna, F.G., Bertella, F., de Oliveira, D., and de Oliveira, J.V. (2012) Influence of process parameters on the immobilization of commercial porcine pancreatic lipase using three low-cost supports. Biocatal. Agric. Biotechnol., 1(4): 290–294. doi:10.1016/j.bcab.2012.06.003
  • Gilani, S.L., Najafpour, G.D., Moghadamnia, A., and Kamaruddin, A. (2016) Stability of immobilized porcine pancreas lipase on mesoporous chitosan beads: a comparative study. J. Mol. Catal. B Enzym., 133: 144–153. doi:10.1016/j.molcatb.2016.08.005
  • Bose, A. and Keharia, H. (2013) Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatal. Agric. Biotechnol., 2(3): 255–266. doi:10.1016/j.bcab.2013.03.009
  • Liew, Y.X., Chan, Y.J., Show, P.L., Manickam, S., and Chong, M.F. (2015) Optimization of alkaline lipase production from Burkholderia cepacia through submerged fermentation. Chem. Eng. Trans., 45: 1675–1680.
  • Gupta, N., Sahai, V., and Gupta, R. (2007) Alkaline lipase from a novel strain Burkholderia multivorans: statistical medium optimization and production in a bioreactor. Process Biochem, 42(4): 518–526. doi:10.1016/j.procbio.2006.10.006
  • Ayaz, B., Ugur, A., and Boran, R. (2015) Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatal. Agric. Biotechnol., 4(1): 103–108. doi:10.1016/j.bcab.2014.11.007
  • Kanmani, P., Kumaresan, K., and Aravind, J. (2015) Utilization of coconut oil mill waste as a substrate for optimized lipase production, oil biodegradation and enzyme purification studies in Staphylococcus pasteuri. Electron. J. Biotechn., 18(1): 20–28. doi:10.1016/j.ejbt.2014.11.003
  • Singh, A.K. and Mukhopadhyay, M. (2012) Overview of fungal lipase: a review. Appl. Biochem. Biotechnol., 166(2): 486–520. doi:10.1007/s12010-011-9444-3
  • Colla, L.M., Primaz, A.L., Benedetti, S., Loss, R.A., de Lima, M., and Reinehr, C.O. (2016) Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Braz. J. Microbiol., 47(2): 461–467. doi:10.1016/j.bjm.2016.01.028
  • Basheer, S.M., Chellappan, S., Beena, P.S., Sukumaran, R.K., Elyas, K.K., and Chandrasekaran, M. (2011) Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. N. Biotechnol., 28(6): 627–638. doi:10.1016/j.nbt.2011.04.007
  • Nagarajan, S. (2012) New tools for exploring old friends-microbial lipases. Appl. Biochem. Biotechnol., 168(5): 1163–1196. doi:10.1007/s12010-012-9849-7
  • Maldonado, R.R., Burkert, J.F.M., Mazutti, M.A., Maugeri, F., and Rodrigues, M.I. (2012) Evaluation of lipase production by Geotrichum candidum in shaken flasks and bench-scale stirred bioreactor using different impellers. Biocatal. Agric. Biotechnol., 1(2): 147–151. doi:10.1016/j.bcab.2012.01.003
  • Li, N. and Zong, M.H. (2010) Lipases from the genus Penicillium: production, purification, characterization and applications. J. Mol. Catal. B Enzym., 66(1–2): 43–54. doi:10.1016/j.molcatb.2010.05.004
  • Silveira, E.A., Tardioli, P.W., and Farinas, C.S. (2016) Valorization of palm oil industrial waste as feedstock for lipase production. Appl. Biochem. Biotechnol., 179(4): 1–14. doi:10.1007/s12010-015-1975-6
  • Treichel, H., de Oliveira, D., Mazutti, M.A., Di Luccio, M., and Oliveira, J.V. (2010) A review on microbial lipases production. Food Bioprocess Technol., 3(2): 182–196. doi:10.1007/s11947-009-0202-2
  • Khoramnia, A., Ebrahimpour, A., Beh, B.K., and Lai, O.M. (2011) Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations. J. Biomed. Biotechnol., 2011: article 702179. doi:10.1155/2011/702179
  • Narasimha, G., Kumar, A.P., and Subramanyam, D. (2011) Production and optimization of lipase enzyme by Pseudomonas sps. Biotechnol. (Rajkot)., 5(1): 36–42.
  • Singhania, R.R., Patel, A.K., Soccol, C.R., and Pandey, A. (2009) Recent advances in solid-state fermentation. Biochem. Eng. J., 44(1): 13–18. doi:10.1016/j.bej.2008.10.019
  • Martin del Campo, M., Camacho, R.M., Mateos-Díaz, J.C., Müller-Santos, M., Córdova, J., and Rodríguez, J.A. (2015) Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea. Extremophiles, 19(6): 1121–1132. doi:10.1007/s00792-015-0784-8
  • Dutra, J.C.V., da Terzi, S.C., Bevilaqua, J.V., Damaso, M.C.T., Couri, S., and Langone, M.A.P. (2008) Lipase production in solid-state fermentation monitoring biomass growth of Aspergillus niger using digital image processing. Appl. Biochem. Biotechnol., 147(1): 63–75. doi:10.1007/s12010-007-8068-0
  • Sarkar, D. and Laha, S. (2013) Optimization of extracellular lipase enzyme production from Aspergillus niger by submerged and solid-state fermentation process. Int. J. Pharma. Bio. Sci., 4(4): 978–985.
  • Gutarra, M.L.E., De Godoy, M.G., Silva, J.D.N., Guedes, I.A., Lins, U., and Castilho, L.D.R. (2009) Lipase production and Penicillium simplicissimum morphology in solid-state and submerged fermentations. Biotechnol. J., 4(10): 1450–1459. doi:10.1002/biot.200800298
  • Coradi, G.V., Da Visitação, V.L., De Lima, E.A., Saito, L.Y.T., Palmieri, D.A., and Takita, M.A. (2013) Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Ann. Microbiol., 63(2): 533–540. doi:10.1007/s13213-012-0500-1
  • Andrade, G.S.S., Freitas, L., Oliveira, P.C., and de Castro, H.F. (2012) Screening, immobilization and utilization of whole cell biocatalysts to mediate the ethanolysis of babassu oil. J. Mol. Catal. B Enzym., 84: 183–188. doi:10.1016/j.molcatb.2012.02.011
  • Ferrarezi, A.L., Ohe, H.K.T., Borges, J.P., Brito, R.R., Siqueira, M.R., and Vendramini, P.H. (2014) Production and characterization of lipases and immobilization of whole cell of the thermophilic Thermomucor indicae seudaticae N31 for transesterification reaction. J. Mol. Catal. B Enzym., 107: 106–113. doi:10.1016/j.molcatb.2014.05.012
  • He, Q., Xu, Y., Teng, Y., and Wang, D. (2008) Biodiesel production catalyzed by whole-cell lipase from Rhizopus chinensis. Chinese J. Catal., 29(1): 41–46. doi:10.1016/S1872-2067(08)60015-7
  • Elibol, M. and Özer, D. (2000) Lipase production by immobilised Rhizopus arrhizus. Process Biochem, 36(3): 219–223. doi:10.1016/S0032-9592(00)00191-6
  • Chen, J.P. and Lin, G.H. (2010) Optimization of biodiesel production catalyzed by fungus cells immobilized in fibrous supports. Appl. Biochem. Biotechnol., 161(1–8): 181–194. doi:10.1007/s12010-009-8776-8
  • Brigida, A.I.S., Amaral, P.F.F., Coelho, M.A.Z., and Goncalves, L.R.B. (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J. Mol. Catal. B Enzym., 101: 148–158. doi:10.1016/j.molcatb.2013.11.016
  • Walsh, G. (2014) Proteins Biochemistry and Biotechnology, 2nd ed.; Wiley: Hoboken, NJ, USA.
  • Angajala, G., Pavan, P., and Subashini, R. (2016) Lipases: an overview of its current challenges and prospectives in the revolution of biocatalysis. Biocatal. Agric. Biotechnol., 7: 257–270. doi:10.1016/j.bcab.2016.07.001
  • Patel, V., Nambiar, S., and Madamwar, D. (2014) An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: partial purification, characterization and application in non-aqueous environment. Process Biochem, 49(10): 1673–1681. doi:10.1016/j.procbio.2014.06.007
  • Charcosset, C. (2011) Comprehensive Biotechnology. In Membrane Systems and Technology, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington, MA, USA. 603–618.
  • Li, M., Yang, L.-R., Xu, G., and Wu, J.-P. (2013) Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour. Technol., 148: 114–120. doi:10.1016/j.biortech.2013.08.101
  • Sarkar, P., Yamasaki, S., Basak, S., Bera, A., and Bag, P.K. (2012) Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere. Process Biochem, 47(5): 858–866. doi:10.1016/j.procbio.2012.02.023
  • Sun, Y., Shi, Q.H., Zhang, L., Zhao, G.F., and Liu, F.F. (2011). Adsorption and Chromatography. In Comprehensive Biotechnology Adsorption and Chromatography, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington, MA, USA. 665–679.
  • Tan, C.H., Show, P.L., Ooi, C.W., Ng, E.P., Lan, J.C., and Ling, T.C. (2015) Novel lipase purification methods – a review of the latest developments. Biotechnol. J., 10(1): 31–44. doi:10.1002/biot.201400301
  • Trodler, P., Nieveler, J., Rusnak, M., Schmid, R.D., and Pleiss, J. (2008) Rational design of a new one-step purification strategy for Candida antarctica lipase B by ion-exchange chromatography. J. Chromatogr. A., 1179(2): 161–167. doi:10.1016/j.chroma.2007.11.108
  • Sivaramakrishnan, R. and Incharoensakdi, A. (2016) Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil. J. Biosci. Bioeng., 121(5): 517–522. doi:10.1016/j.jbiosc.2015.09.005
  • Ünlüer, O.B., Özcan, A., and Uzun, L. (2014) Preparation of a novel hydrophobic affinity cryogel for adsorption of lipase and its utilization as a chromatographic adsorbent for fast protein liquid chromatography. Biotechnol. Prog., 30(2): 376–382. doi:10.1002/btpr.1863
  • Giorno, L., De Bartolo, L., and Drioli, E. (2011) Comprehensive Biotechnology. In Membrane Bioreactors, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington, MA, USA. 263–288.
  • Yong, S.K., Lim, B.H., Saleh, S., and Tey, L.-H. (2016) Optimisation, purification and characterisation of extracellular lipase from Botryococcus sudeticus (UTEX 2629). J. Mol. Catal. B Enzym., 126: 99–105. doi:10.1016/j.molcatb.2016.02.004
  • Trimukhe, K.D., Mahadik, N.D., Gokhale, D.V., and Varma, A.J. (2008) Environment friendly crosslinked chitosan as a matrix for selective adsorption and purification of lipase of Aspergillus niger. Int. J. Biol. Macromol., 43(5): 422–425. doi:10.1016/j.ijbiomac.2008.08.005
  • Pauwels, K. and Van Gelder, P. (2008) Affinity-based isolation of a bacterial lipase through steric chaperone interactions. Protein Expr. Purif., 59(2): 342–348. doi:10.1016/j.pep.2008.03.003
  • Show, P.L., Tan, C.P., Shamsul Anuar, M., Ariff, A., Yusof, Y.A., and Chen, S.K. (2012) Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. Bioresour. Technol., 116: 226–233. doi:10.1016/j.biortech.2011.09.131
  • Benavides, J., Rito-Palomares, M., and Asenjo, J.A. (2011) In Comprehensive Biotechnology Aqueous Two-Phase Systems, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington, MA, USA. 697–713.
  • Asenjo, J.A. and Andrews, B.A. (2012) Aqueous two-phase systems for protein separation: phase separation and applications. J. Chromatogr. A., 1238(Supplement C): 1–10. doi:10.1016/j.chroma.2012.03.049
  • Khayati, G. and Alizadeh, S. (2013) Extraction of lipase from Rhodotorula glutinis fermentation culture by aqueous two-phase partitioning. Fluid Phase Equilib., 353: 132–134. doi:10.1016/j.fluid.2013.05.037
  • Souza, R.L., Lima, R.A., Coutinho, J.A.P., Soares, C.M.F., and Lima, Á.S. (2015) Novel aqueous two-phase systems based on tetrahydrofuran and potassium phosphate buffer for purification of lipase. Process Biochem, 50(9): 1459–1467. doi:10.1016/j.procbio.2015.05.015
  • Nandini, K.E. and Rastogi, N.K. (2009) Reverse micellar extraction for downstream processing of lipase: effect of various parameters on extraction. Process Biochem, 44(10): 1172–1178. doi:10.1016/j.procbio.2009.06.020
  • Wang, D., Zhu, Z., Wang, X., Bustamante, M., Xu, Y., and Liu, Y. (2015) Improving mycelium-bound lipase production by aggregating Rhizopus chinensis on a draft tube in a modified stirred tank fermentor. Process Biochem, 50(12): 2019–2028. doi:10.1016/j.procbio.2015.10.004
  • Gaikaiwari, R.P., Wagh, S.A., and Kulkarni, B.D. (2012) Efficient lipase purification using reverse micellar extraction. Bioresour. Technol., 108: 224–230. doi:10.1016/j.biortech.2011.11.126
  • Chen, G.-J., Kuo, C.-H., Chen, C.-I., Yu, -C.-C., Shieh, C.-J., and Liu, Y.-C. (2012) Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability. J. Biosci. Bioeng., 113(2): 166–172. doi:10.1016/j.jbiosc.2011.09.023
  • Hori, K. and Unno, H. (2011) In Comprehensive Biotechnology, Integrated Production and Separation, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington. 579–590.
  • Bhavya, S.G., Priyanka, B.S., and Rastogi, N.K. (2012) Reverse micelles-mediated transport of lipase in liquid emulsion membrane for downstream processing. Biotechnol. Prog., 28(6): 1542–1550. doi:10.1002/btpr.1637
  • Yujun, W., Jian, X., Guangsheng, L., and Youyuan, D. (2008) Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface. Bioresour. Technol., 99(7): 2299–2303. doi:10.1016/j.biortech.2007.05.014
  • Wohlgemuth, R. (2011). Product Recovery. In Comprehensive Biotechnology Product Recovery, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington. 591–601.
  • Pan, T., Wang, Z., Xu, J.H., Wu, Z., and Qi, H. (2010) Extractive fermentation in cloud point system for lipase production by Serratia marcescens ECU1010. Appl. Microbiol. Biotechnol., 85(6): 1789–1796. doi:10.1007/s00253-009-2257-4
  • Ooi, C.W., Hii, S.L., Kamal, S.M.M., Ariff, A., and Ling, T.C. (2011) Extractive fermentation using aqueous two-phase systems for integrated production and purification of extracellular lipase derived from Burkholderia pseudomallei. Process Biochem, 46(1): 68–73. doi:10.1016/j.procbio.2010.07.014
  • Arumugam, A. and Ponnusami, V. (2014) Biodiesel production from Calophyllum inophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams. Renew. Energ., 64: 276–282. doi:10.1016/j.renene.2013.11.016
  • Kuo, T.C., Shaw, J.F., and Lee, G.C. (2015) Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes. Bioresour. Technol., 192: 54–59. doi:10.1016/j.biortech.2015.05.008
  • Jakovetić Tanasković, S., Jokić, B., Grbavčić, S., Drvenica, I., Prlainović, N., and Luković, N. (2017) Immobilization of Candida antarctica lipase B on kaolin and its application in synthesis of lipophilic antioxidants. Appl. Clay Sci., 135: 103–111. doi:10.1016/j.clay.2016.09.011
  • Grbavčić, S., Bezbradica, D., Izrael-Živković, L., Avramović, N., Milosavić, N., and Karadžić, I. (2011) Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresour. Technol., 102(24): 11226–11233. doi:10.1016/j.biortech.2011.09.076
  • Pereira, M.G., Facchini, F.D.A., Filó, L.E.C., Polizeli, A.M., Vici, A.C., and Jorge, J.A. (2015) Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: determination of thermal and organic solvent stabilities for applications in the oleochemical industry. Process Biochem, 50(4): 561–570. doi:10.1016/j.procbio.2014.12.027
  • Ben Bacha, A., Al-Assaf, A., Moubayed, N.M.S., and Abid, I. (2016) Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations. Saudi J. Biol. Sci., 25(3): 409–417. doi:10.1016/j.sjbs.2016.10.006
  • Trbojević Ivić, J., Veličković, D., Dimitrijević, A., Bezbradica, D., Dragačević, V., and Gavrović Jankulović, M. (2016) Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. J. Sci. Food Agric., 96(12): 4281–4287. doi:10.1002/jsfa.7641
  • Ng, C.H. and Yang, K.-L. (2016) Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media. Enzyme Microb. Technol., 82: 173–179. doi:10.1016/j.enzmictec.2015.10.005
  • Cai, C., Gao, Y., Liu, Y., Zhong, N., and Liu, N. (2016) Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Food Chem., 212: 205–212. doi:10.1016/j.foodchem.2016.05.167
  • Liu, Z.Q., Zheng, X.B., Zhang, S.P., and Zheng, Y.G. (2012) Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters. Microbiol. Res., 167(8): 452–460. doi:10.1016/j.micres.2011.12.004
  • Matte, C.R., Bordinhaõ, C., Poppe, J.K., Rodrigues, R.C., Hertz, P.F., and Ayub, M.A.Z. (2016) Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. J. Mol. Catal. B Enzym., 127: 67–75. doi:10.1016/j.molcatb.2016.02.016
  • Qin, S., Zhao, Y., Wu, B., and He, B. (2016) A calcium-ion-stabilized lipase from Pseudomonas stutzeri ZS04 and its application in resolution of chiral aryl alcohols. Appl. Biochem. Biotechnol., 180(7): 1–11. doi:10.1007/s12010-016-2088-6
  • Kanmani, P., Kumaresan, K., Aravind, J., Karthikeyan, S., and Balan, R. (2016) Enzymatic degradation of polyhydroxyalkanoate using lipase from Bacillus subtilis. Int. J. Environ. Sci. Te., 13(6): 1541–1552. doi:10.1007/s13762-016-0992-5
  • Badgujar, K.C. and Bhanage, B.M. (2016) Lipase immobilization on hyroxypropyl methyl cellulose support and its applications for chemo-selective synthesis of β-amino ester compounds. Process Biochem, 51(10): 1420–1433. doi:10.1016/j.procbio.2016.07.008
  • Saha, B.C., Jordan, D.B., and Bothast, R.J. (2009) Encyclopedia of microbiology. In Enzymes, Industrial (Overview) A2 – Schaechter, Moselio, 3rd ed.; Academic Press: Oxford, UK. 281–294.
  • Ghorai, S., Banik, S.P., Verma, D., Chowdhury, S., Mukherjee, S., and Khowala, S. (2011) Comprehensive Biotechnology. In Fungal Biotechnology in Food and Feed Processing, 2nd ed.; Moo-Young, M., ed.; Academic Press: Burlington, MA, USA. 603–615.
  • Cao, M., Fonseca, L.M., Schoenfuss, T.C., and Rankin, S.A. (2014) Homogenization and lipase treatment of milk and resulting methyl ketone generation in blue cheese. J. Agric. Food. Chem., 62(25): 5726–5733. doi:10.1021/jf4048786
  • Calzada, J., Del Olmo, A., Picon, A., Gaya, P., and Nuñez, M. (2013) High-pressure processing decelerates lipolysis and formation of volatile compounds in ovine milk blue-veined cheese. J. Dairy Sci., 96(12): 7500–7510. doi:10.3168/jds.2013-7221
  • Mathpati, A.C., Badgujar, K.C., and Bhanage, B.M. (2016) Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate. Enzyme Microb. Technol., 84: 1–10. doi:10.1016/j.enzmictec.2015.12.003
  • Ornla-Ied, P., Sonwai, S., and Lertthirasuntorn, S. (2016) Trans-free margarine fat produced using enzymatic interesterification of rice bran oil and hard palm stearin. Food Sci. Biotechnol., 25(3): 673–680. doi:10.1007/s10068-016-0118-3
  • Pande, G., Akoh, C.C., and Shewfelt, R.L. (2013) Utilization of enzymatically interesterified cottonseed oil and palm stearin-based structured lipid in the production of trans-free margarine. Biocatal. Agric. Biotechnol., 2(1): 76–84. doi:10.1016/j.bcab.2012.08.005
  • Sellami, M., Ghamgui, H., Frikha, F., Gargouri, Y., and Miled, N. (2012) Enzymatic transesterification of palm stearin and olein blends to produce zero-trans margarine fat. BMC Biotechnol., 12: 48–54. doi:10.1186/1472-6750-12-48
  • Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., and Zhu, B. (2015) Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste. Bioresour. Technol., 179: 452–459. doi:10.1016/j.biortech.2014.12.015
  • Ferreira-Dias, S., Osório, N.M., Rodrigues, J., and Tecelão, C. (2018) Reference Module in Food Science, Structured Lipids for Foods; Elsevier: Amsterdam, The Netherlands.
  • Ilyasoglu, H. (2013) Production of human fat milk analogue containing α-linolenic acid by solvent-free enzymatic interesterification. Lwt-Food Sci. Technol., 54(1): 179–185. doi:10.1016/j.lwt.2013.05.036
  • Ray, J., Nagy, Z.K., Smith, K.W., Bhaggan, K., and Stapley, A.G.F. (2013) Kinetic study of the acidolysis of high oleic sunflower oil with stearic-palmitic acid mixtures catalysed by immobilised Rhizopus oryzae lipase. Biochem. Eng. J., 73: 17–28. doi:10.1016/j.bej.2012.12.018
  • Bahari, A. and Akoh, C.C. (2018) Synthesis of a cocoa butter equivalent by enzymatic interesterification of Illipe butter and palm midfraction. J. Am. Oil. Chem. Soc., 95(5): 547–555. doi:10.1002/aocs.2018.95.issue-5
  • Mohamed, I.O. (2014) Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture. Appl. Biochem. Biotechnol., 175(2): 757–769. doi:10.1007/s12010-014-1312-5
  • Shekarchizadeh, H. and Kadivar, M. (2012) A study on parameters of potential cocoa butter analogue synthesis from camel hump by lipase-catalysed interesterification in supercritical CO2 using response surface methodology. Food Chem., 135(1): 155–160. doi:10.1016/j.foodchem.2012.04.033
  • Yu, X.W., Xu, Y., and Xiao, R. (2016) Lipases from the genus Rhizopus: characteristics, expression, protein engineering and application. Prog. Lipid Res., 64(Supplement C): 57–68. doi:10.1016/j.plipres.2016.08.001
  • Calero, J., Verdugo, C., Luna, D., Sancho, E.D., Luna, C., and Posadillo, A. (2014) Selective ethanolysis of sunflower oil with lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. N. Biotechnol., 31(6): 596–601. doi:10.1016/j.nbt.2014.02.008
  • Escobar-Niño, A., Luna, C., Luna, D., Marcos, A.T., Cánovas, D., and Mellado, E. (2014) Selection and characterization of biofuel-producing environmental bacteria isolated from vegetable oil-rich wastes. PLoS ONE, 9(8): article e104063. doi:10.1371/journal.pone.0104063
  • Caballero, V., Bautista, F.M., Campelo, J.M., Luna, D., Marinas, J.M., and Romero, A.A. (2009) Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochem, 44(3): 334–342. doi:10.1016/j.procbio.2008.11.015
  • Fukaya, K., Yamaguchi, Y., Watanabe, A., Yamamoto, H., Sugai, T., and Sugai, T. (2016) Practical synthesis of the C-ring precursor of paclitaxel from 3-methoxytoluene. J. Antibiot. (Tokyo)., 69: 273–279. doi:10.1038/ja.2016.6
  • Baliyan, A., Usha, S.P., Gupta, B.D., Gupta, R., and Sharma, E.K. (2017) Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles. J. Biomed. Opt., 22(10): 1–10. doi:10.1117/1.JBO.22.10.107001
  • Narwal, V. and Pundir, C.S. (2017) An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode. Enzyme Microb. Technol., 100: 11–16. doi:10.1016/j.enzmictec.2017.01.009
  • Herranz, S., Marciello, M., Marco, M.P., Garcia-Fierro, J.L., Guisan, J.M., and Moreno-Bondi, M.C. (2018) Multiplex environmental pollutant analysis using an array biosensor coated with chimeric hapten-dextran-lipase constructs. Sens. Actuator B-Chem., 257: 256–262. doi:10.1016/j.snb.2017.10.134
  • Okino-Delgado, C.H., Do Prado, D.Z., Facanali, R., Marques, M.M.O., Nascimento, A.S., and Fernandes, C.J.D.C. (2017) Bioremediation of cooking oil waste using lipases from wastes. PLoS ONE, 12(10): article 186246. doi:10.1371/journal.pone.0186246

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.