1,775
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Current Advances in Separation and Purification of Second-Generation Lactic Acid

ORCID Icon, , , , &
Pages 159-175 | Received 05 Sep 2018, Accepted 15 Feb 2019, Published online: 01 Apr 2019

References

  • Cubas-Cano, E., González-Fernández, C., Ballesteros, M., and Tomás-Pejó, E. (2018) Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate. Biofuels. Bioprod. Biorefining., 12: 290–303. doi:10.1002/bbb.1852.
  • Komesu, A., Oliveira, J.A.R., De, Martins, L.H., Da, S., Wolf Maciel, M.R., and Maciel Filho, R. (2017) Lactic acid production to purification: A review. BioResources., 12: 4364–4383.
  • Hetényi, K., Németh, Á., and Sevella, B. (2011) Role of pH-regulation in lactic acid fermentation: second steps in a process improvement. Chem. Eng. Process Intensif., 50: 293–299. doi:10.1016/j.cep.2011.01.008.
  • Ramaswamy, S., Huang, H.J., and Ramarao, B.V. (2013) Separation and Purification Technologies in Biorefineries; Ramaswamy, S., Huang, H.-J., and Ramarao, B.V. Eds.; John Wiley & Sons, Ltd: Chichester: UK.
  • Reddy, L.V., Kim, Y.-M., Yun, J.-S., Ryu, H.-W., and Wee, Y.-J. (2016) L-lactic acid production by combined utilization of agricultural bioresources as renewable and economical substrates through batch and repeated-batch fermentation of Enterococcus faecalis RKY1. Bioresour. Technol., 209: 187–194. doi:10.1016/j.biortech.2016.02.115.
  • Palmeros Parada, M., Osseweijer, P., and Posada Duque, J.A. (2017) Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind. Crops. Prod., 106: 105–123. doi:10.1016/j.indcrop.2016.08.052.
  • Moncada, B. J., Aristizábal, M. V., and Cardona, A. C. A. (2016) Design strategies for sustainable biorefineries. Biochem. Eng. J., 116: 122–134. doi:10.1016/j.bej.2016.06.009.
  • Sillanpää, M. and Ncibi, C. (2017) A Sustainable Bioeconomy. Springer International Publishing: Basel, Switzerland.
  • Cherubini, F. (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag., 51: 1412–1421. doi:10.1016/j.enconman.2010.01.015.
  • Gonzalez-Garcia, S., Gullón, B., and Moreira, M.T. (2018) Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides. J. Clean Prod., 172: 4066–4073. doi:10.1016/j.jclepro.2017.02.164.
  • Eş, I., Mousavi Khaneghah, A., Barba, F.J., Saraiva, J.A., Sant’Ana, A.S., and Hashemi, S.M.B. (2018) Recent advancements in lactic acid production - A review. Food Res. Int., 107: 763–770. doi:10.1016/j.foodres.2018.01.001.
  • Reddy, G., Altaf, M., Naveena, B.J., Venkateshwar, M., and Kumar, E.V. (2008) Amylolytic bacterial lactic acid fermentation — A review. Biotechnol Adv., 26: 22–34. doi:10.1016/j.biotechadv.2007.07.004.
  • Vijayakumar, J., Aravindan, R., and Viruthagiri, T. (2008) Recent trends in the production, purification and application of lactic acid. Chem. Biochem. Eng. Q., 22: 245–264.
  • Yadav, A.K., Chaudhari, A.B., and Kothari, R.M. (2011) Bioconversion of renewable resources into lactic acid: an industrial view. Crit. Rev. Biotechnol., 31: 1–19. doi:10.3109/07388550903420970.
  • Wang, Y., Tashiro, Y., and Sonomoto, K. (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J. Biosci. Bioeng., 119: 10–18. doi:10.1016/j.jbiosc.2014.08.002.
  • Tan, J., Abdel-Rahman, M.A., and Sonomoto, K. (2017) Biorefinery-based lactic acid fermentation: microbial production of pure monomer product. Romanian Rep. Phys., 54: 27–66.
  • Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., and Auras, R. (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv. Drug. Deliv. Rev., 107: 333–366. doi:10.1016/j.addr.2016.03.010.
  • Miller, C., Fosmer, A., Rush, B., McMullin, T., Beacom, D., and Suominen, P. (2011) Industrial production of lactic acid. In Comprehensive Biotechnology; M. Moo-Young, ed., Elsevier: Amsterdam, The Netherlands, Vol. 3, 179–188. ISBN 978-0-08-088504-9.
  • Auras, R., Lim, L.T., Selke, S.E.M., and Tsuji, H. (2010) Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications; Grossman, R.F. and Nwabunma, D. Eds.; John Wiley & Sons, Inc: New Jersey,USA.
  • Taskila, S. and Ojamo, H. (2013) The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. In Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes; J. M. Kongo, ed., InTech:London, UK, 615–632. doi:10.5772/51282.
  • Abdel-Rahman, M.A., Tashiro, Y., and Sonomoto, K. (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol., 156: 286–301. doi:10.1016/j.jbiotec.2011.07.015.
  • Abdel-Rahman, M.A. and Sonomoto, K. (2016) Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol., 236: 176–192. doi:10.1016/j.jbiotec.2016.08.008.
  • Juturu, V. and Wu, J.C. (2016) Microbial production of lactic acid: the latest development. Crit. Rev. Biotechnol., 36: 967–977. doi:10.3109/07388551.2015.1066305.
  • Okano, K., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl. Microbiol. Biotechnol., 85: 413–423. doi:10.1007/s00253-009-2280-5.
  • Pal, P., Sikder, J., Roy, S., and Giorno, L. (2009) Process intensification in lactic acid production: A review of membrane based processes. Chem. Eng. Process. Intensif., 48: 1549–1559. doi:10.1016/j.cep.2009.09.003.
  • Abdel-Rahman, M.A., Tashiro, Y., and Sonomoto, K. (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv., 31: 877–902. doi:10.1016/j.biotechadv.2013.04.002.
  • Huang, H.-J., Ramaswamy, S., Tschirner, U.W., and Ramarao, B.V. (2008) A review of separation technologies in current and future biorefineries. Sep. Purif. Technol., 62: 1–21. doi:10.1016/j.seppur.2007.12.011.
  • Ghaffar, T., Irshad, M., Anwar, Z., Aqil, T., Zulifqar, Z., Tariq, A., Kamran, M., Ehsan, N., and Mehmood, S. (2014) Recent trends in lactic acid biotechnology: A brief review on production to purification. J. Radiat .Res. Appl. Sci., 7: 222–229. doi:10.1016/j.jrras.2014.03.002.
  • Castillo Martinez, F.A., Balciunas, E.M., Salgado, J.M., Domínguez González, J.M., Converti, A., and Oliveira, R.P.D.S. (2013) Lactic acid properties, applications and production: A review. Trends. Food Sci. Technol., 30: 70–83. doi:10.1016/j.tifs.2012.11.007.
  • Komesu, A., Wolf Maciel, M.R., and Maciel Filho, R. (2017) Separation and purification technologies for lactic acid – A brief review. BioResources., 12: 6885–6901.
  • Alves de Oliveira, R., Komesu, A., Vaz Rossell, C.E., and Maciel Filho, R. (2018) Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects. Biochem. Eng. J., 133: 219–239. doi:10.1016/j.bej.2018.03.003.
  • Jantasee, S., Kienberger, M., Mungma, N., and Siebenhofer, M. (2017) Potential and assessment of lactic acid production and isolation - A review. J. Chem. Technol. Biotechnol., 92: 2885–2893. doi:10.1002/jctb.2017.92.issue-12.
  • Wasewar, K.L., Yawalkar, A.A., Moulijn, J.A., and Pangarkar, V.G. (2004) Fermentation of glucose to lactic acid coupled with reactive extraction: A review. Ind. Eng. Chem. Res., 43: 5969–5982. doi:10.1021/ie049963n.
  • Datta, R. and Henry, M. (2006) Lactic acid: recent advances in products, processes and technologies — A review. J. Chem. Technol. Biotechnol., 81: 1119–1129. doi:10.1002/(ISSN)1097-4660.
  • Kuisma, M., Kahiluoto, H., Havukainen, J., Lehtonen, E., Luoranen, M., Myllymaa, T., Grönroos, J., and Horttanainen, M. (2013) Understanding biorefining efficiency – the case of agrifood waste. Bioresour. Technol., 135: 588–597. doi:10.1016/j.biortech.2012.11.038.
  • Dedenaro, G., Costa, S., Rugiero, I., Pedrini, P., and Tamburini, E. (2016) Valorization of agri-food waste via fermentation: production of L-lactic acid as a building block for the synthesis of biopolymers. Appl. Sci., 6: 379–388. doi:10.3390/app6120379.
  • Djukić-Vuković, A., Mladenović, D., Radosavljević, M., Kocić-Tanackov, S., Pejin, J., and Mojović, L. (2016) Wastes from bioethanol and beer productions as substrates for L(+) lactic acid production – A comparative study. Waste Manag., 48: 478–482. doi:10.1016/j.wasman.2015.11.031.
  • Probst, M., Walde, J., Pümpel, T., Wagner, A.O., and Insam, H. (2015) A closed loop for municipal organic solid waste by lactic acid fermentation. Bioresour. Technol., 175: 142–151. doi:10.1016/j.biortech.2014.10.034.
  • Ahring, B.K., Traverso, J.J., Murali, N., and Srinivas, K. (2016) Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem. Eng. J., 109: 162–169. doi:10.1016/j.bej.2016.01.012.
  • Kwan, T.H., Hu, Y., and Lin, C.S.K. (2016) Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour. Technol., 217: 129–136. doi:10.1016/j.biortech.2016.01.134.
  • Wu, Y., Ma, H., Zheng, M., and Wang, K. (2015) Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresour. Technol., 191: 53–58. doi:10.1016/j.biortech.2015.04.100.
  • Tirpanalan, Ö., Reisinger, M., Smerilli, M., Huber, F., Neureiter, M., Kneifel, W., and Novalin, S. (2015) Wheat bran biorefinery – an insight into the process chain for the production of lactic acid. Bioresour. Technol., 180: 242–249. doi:10.1016/j.biortech.2015.01.021.
  • Pleissner, D., Neu, A.-K., Mehlmann, K., Schneider, R., Puerta-Quintero, G.I., and Venus, J. (2016) Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresour. Technol., 218: 167–173. doi:10.1016/j.biortech.2016.06.078.
  • Wang, Y., Yang, Z., Qin, P., and Tan, T. (2014) Fermentative L-(+)-lactic acid production from defatted rice bran. RSC Adv., 4: 8907–8910. doi:10.1039/c3ra46140h.
  • Shi, Z., Wei, P., Zhu, X., Cai, J., Huang, L., and Xu, Z. (2012) Efficient production of L-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors. Enzyme. Microb. Technol., 51: 263–268. doi:10.1016/j.enzmictec.2012.07.007.
  • Ge, X.-Y. (2010) Enhancement of L-lactic acid production in Lactobacillus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism. J. Microbiol. Biotechnol., 20: 101–109.
  • Gandolfi, S., Pistone, L., Ottolina, G., Xu, P., and Riva, S. (2015) Hemp hurds biorefining: A path to green L-(+)-lactic acid production. Bioresour. Technol., 191: 59–65. doi:10.1016/j.biortech.2015.04.118.
  • Karp, S.G., Igashiyama, A.H., Siqueira, P.F., Carvalho, J.C., Vandenberghe, L.P.S., Thomaz-Soccol, V., Coral, J., Tholozan, J.-L., Pandey, A., and Soccol, C.R. (2011) Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale. Bioresour. Technol., 102: 1765–1772. doi:10.1016/j.biortech.2010.08.102.
  • Wang, Y., Wang, M., Cai, D., Wang, B., Wang, Z., Qin, P., and Tan, T. (2016) Efficient L-lactic acid production from sweet sorghum bagasse by open simultaneous saccharification and fermentation. RSC Adv., 6: 35771–35777. doi:10.1039/C6RA04538C.
  • Liu, G., Sun, J., Zhang, J., Tu, Y., and Bao, J. (2015) High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling. Bioresour. Technol., 198: 803–810. doi:10.1016/j.biortech.2015.09.098.
  • Hama, S., Mizuno, S., Kihara, M., Tanaka, T., Ogino, C., Noda, H., and Kondo, A. (2015) Production of D-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresour. Technol., 187: 167–172. doi:10.1016/j.biortech.2015.03.106.
  • Kuo, Y.-C., Yuan, S.-F., Wang, C.-A., Huang, Y.-J., Guo, G.-L., and Hwang, W.-S. (2015) Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour. Technol., 198: 651–657. doi:10.1016/j.biortech.2015.09.071.
  • Nguyen, C.M., Kim, J.-S., Nguyen, T.N., Kim, S.K., Choi, G.J., Choi, Y.H., Jang, K.S., and Kim, J.-C. (2013) Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresour. Technol., 146: 35–43. doi:10.1016/j.biortech.2013.08.032.
  • Hu, J., Lin, Y., Zhang, Z., Xiang, T., Mei, Y., Zhao, S., Liang, Y., and Peng, N. (2016) High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Bioresour. Technol., 214: 74–80. doi:10.1016/j.biortech.2016.04.034.
  • Djukić-Vuković, A.P., Mojović, L.V., Jokić, B.M., Nikolić, S.B., and Pejin, J.D. (2013) Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite. Bioresour. Technol., 135: 454–458. doi:10.1016/j.biortech.2012.10.066.
  • Demichelis, F., Pleissner, D., Fiore, S., Mariano, S., Navarro Gutiérrez, I.M., Schneider, R., and Venus, J. (2017) Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresour. Technol., 241: 508–516. doi:10.1016/j.biortech.2017.05.174.
  • Pleissner, D., Demichelis, F., Mariano, S., Fiore, S., Navarro Gutiérrez, I.M., Schneider, R., and Venus, J. (2017) Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J. Clean Prod., 143: 615–623. doi:10.1016/j.jclepro.2016.12.065.
  • Neu, A., Pleissner, D., Mehlmann, K., Schneider, R., Puerta-Quintero, G.I., and Venus, J. (2016) Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure L(+)-lactic acid production. Bioresour. Technol., 211: 398–405. doi:10.1016/j.biortech.2016.03.122.
  • Mussatto, S.I., Moncada, J., Roberto, I.C., and Cardona, C.A. (2013) Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: the Brazilian case. Bioresour. Technol., 148: 302–310. doi:10.1016/j.biortech.2013.08.046.
  • Mussatto, S.I., Fernandes, M., Mancilha, I.M., and Roberto, I.C. (2008) Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochem Eng J, 40: 437–444. doi:10.1016/j.bej.2008.01.013.
  • Mandegari, M.A., Farzad, S., van Rensburg, E., and Görgens, J.F. (2017) Multi-criteria analysis of a biorefinery for co-production of lactic acid and ethanol from sugarcane lignocellulose. Biofuels Bioprod. Biorefining, 11: 971–990. doi:10.1002/bbb.1801.
  • Parajuli, R., Knudsen, M.T., Birkved, M., Djomo, S.N., Corona, A., and Dalgaard, T. (2017) Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach. Sci. Total Environ., 598: 497–512. doi:10.1016/j.scitotenv.2017.04.087.
  • Gyo Lee, E., Moon, S.-H., Keun Chang, Y., Yoo, I.-K., and Nam Chang, H. (1998) Lactic acid recovery using two-stage electrodialysis and its modelling. J. Memb. Sci., 145: 53–66. doi:10.1016/S0376-7388(98)00065-9.
  • Wasewar, K.L., Heesink, A.B.M., Versteeg, G.F., and Pangarkar, V.G. (2002) Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics. J. Biotechnol., 97: 59–68.
  • Wasewar, K.L., Pangarkar, V.G., Heesink, A.B.M., and Versteeg, G.F. (2003) Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction. Chem. Eng. Sci., 58: 3385–3393. doi:10.1016/S0009-2509(03)00221-5.
  • Datta, R., Tsai, S., Bonsignore, P., Moon, S., and Frank, J.R. (1995) Technological and economical potencial of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev., 16: 221–231. doi:10.1111/j.1574-6976.1995.tb00168.x.
  • Yankov, D., Molinier, J., Albet, J., Malmary, G., and Kyuchoukov, G. (2004) Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. Biochem. Eng. J., 21: 63–71. doi:10.1016/j.bej.2004.03.006.
  • Gezae Daful, A. and Görgens, J.F. (2017) Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chem. Eng. Sci., 162: 53–65. doi:10.1016/j.ces.2016.12.054.
  • López-Garzón, C.S. and Straathof, A.J.J. (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv., 32: 873–904. doi:10.1016/j.biotechadv.2014.04.002.
  • Hong, Y.K., Hong, W.H., and Han, D.H. (2001) Application of reactive extraction to recovery of carboxylic acids. Biotechnol. Bioprocess Eng., 6: 386–394. doi:10.1007/BF02932319.
  • Joglekar, H.G., Rahman, I., Babu, S., Kulkarni, B.D., and Joshi, A. (2006) Comparative assessment of downstream processing options for lactic acid. Sep. Purif. Technol., 52: 1–17. doi:10.1016/j.seppur.2006.03.015.
  • Wasewar, K.L., Heesink, A.B.M., Versteeg, G.F., and Pangarkar, V.G. (2004) Intensification of conversion of glucose to lactic acid: equilibria and kinetics for back extraction of lactic acid using trimethylamine. Chem. Eng. Sci., 59: 2315–2320. doi:10.1016/j.ces.2003.11.023.
  • Kurzrock, T. and Weuster-Botz, D. (2010) Recovery of succinic acid from fermentation broth. Biotechnol. Lett., 32: 331–339. doi:10.1007/s10529-009-0163-6.
  • Datta, D., Kumar, S., and Uslu, H. (2015) (2015) Status of the reactive extraction as a method of separation. J Chem, 1–16 (article): 853789.
  • Kurzrock, T. and Weuster-Botz, D. (2011) New reactive extraction systems for separation of bio-succinic acid. Bioprocess Biosyst. Eng., 34: 779–787. doi:10.1007/s00449-011-0526-y.
  • Martak, J. and Schlosser, S. (2007) Extraction of lactic acid by phosphonium ionic liquids. Sep. Purif. Technol., 57: 483–494. doi:10.1016/j.seppur.2006.09.013.
  • Marinova, M., Kyuchoukov, G., Albet, J., Molinier, J., and Malmary, G. (2004) Separation of tartaric and lactic acids by means of solvent extraction. Sep. Purif. Technol., 37: 199–207. doi:10.1016/S1383-5866(03)00218-1.
  • Krzyzaniak, A., Schuur, B., and de Haan, A.B. (2014) Equilibrium studies on lactic acid extraction with N,N-didodecylpyridin-4-amine (DDAP) extractant. Chem. Eng. Sci., 109: 236–243. doi:10.1016/j.ces.2014.01.030.
  • Gao, M.-T., Shimamura, T., Ishida, N., Nagamori, E., Takahashi, H., Umemoto, S., Omasa, T., and Ohtake, H. (2009) Extractive lactic acid fermentation with tri-n-decylamine as the extractant. Enzyme. Microb. Technol., 44: 350–354. doi:10.1016/j.enzmictec.2008.12.001.
  • Aydoğan, Ö., Bayraktar, E., and Mehmetoğlu, Ü. (2011) Aqueous two-phase extraction of lactic acid: optimization by response surface methodology. Sep. Sci. Technol., 46: 1164–1171. doi:10.1080/01496395.2010.550270.
  • Krzyżaniak, A., Leeman, M., Vossebeld, F., Visser, T.J., Schuur, B., and de Haan, A.B. (2013) Novel extractants for the recovery of fermentation derived lactic acid. Sep. Purif. Technol., 111: 82–89. doi:10.1016/j.seppur.2013.03.031.
  • Matsumoto, M., Mochiduki, K., Fukunishi, K., and Kondo, K. (2004) Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Sep. Purif. Technol., 40: 97–101. doi:10.1016/j.seppur.2004.01.009.
  • Harington, T. and Hossain, M.M. (2008) Extraction of lactic acid into sunflower oil and its recovery into an aqueous solution. Desalination, 218: 287–296. doi:10.1016/j.desal.2007.02.024.
  • Udachan, I.S. and Sahoo, A.K. (2014) A study of parameters affecting the solvent extraction of lactic acid from fermentation broth. Brazilian J. Chem. Eng., 31: 821–827. doi:10.1590/0104-6632.20140313s00002495.
  • Hu, Y., Kwan, T.H., Daoud, W.A., and Lin, C.S.K. (2017) Continuous ultrasonic-mediated solvent extraction of lactic acid from fermentation broths. J. Clean. Prod., 145: 142–150. doi:10.1016/j.jclepro.2017.01.055.
  • Aljundi, I.H., Belovich, J.M., and Talu, O. (2005) Adsorption of lactic acid from fermentation broth and aqueous solutions on Zeolite molecular sieves. Chem. Eng. Sci., 60: 5004–5009. doi:10.1016/j.ces.2005.04.034.
  • Chen, -C.-C. and Ju, L.-K. (1998) Adsorption characteristics of polyvinylpyridine and activated carbon for lactic acid recovery from fermentation of Lactobacillus delbrueckii. Sep. Sci. Technol., 33: 1423–1437. doi:10.1080/01496399808545058.
  • Bi, W., Zhou, J., and Row, K.H. (2011) Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids. Talanta, 83: 974–979. doi:10.1016/j.talanta.2010.11.006.
  • Blanc, C.-L., Theoleyre, M.-A., Lutin, F., Pareau, D., and Stambouli, M. (2015) Purification of organic acids by chromatography: adsorption isotherms and impact of elution flow rate. Sep. Purif. Technol., 141: 105–112. doi:10.1016/j.seppur.2014.11.032.
  • Moldes, A.B., Alonso, J.L., and Parajó, J.C. (2003) Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess Biosyst. Eng., 25: 357–363. doi:10.1007/s00449-002-0316-7.
  • Bayazit, S.S., İNci, I., and Uslu, H. (2011) Adsorption of lactic acid from model fermentation broth onto activated carbon and Amberlite IRA-67. J. Chem. Eng. Data, 56: 1751–1754. doi:10.1021/je1006345.
  • Tong, W.-Y., Fu, X.-Y., Lee, S.-M., Yu, J., Liu, J.-W., Wei, D.-Z., and Koo, Y.-M. (2004) Purification of L(+)-lactic acid from fermentation broth with paper sludge as a cellulosic feedstock using weak anion exchanger Amberlite IRA-92. Biochem. Eng. J., 18: 89–96. doi:10.1016/S1369-703X(03)00170-0.
  • Garrett, B.G., Srinivas, K., and Ahring, B.K. (2015) Performance and stability of AmberliteTM IRA-67 ion exchange resin for product extraction and pH control during homolactic fermentation of corn stover sugars. Biochem. Eng. J., 94: 1–8. doi:10.1016/j.bej.2014.11.004.
  • Oonkhanond, B., Jonglertjunya, W., Srimarut, N., Bunpachart, P., Tantinukul, S., Nasongkla, N., and Sakdaronnarong, C. (2017) Lactic acid production from sugarcane bagasse by an integrated system of lignocellulose fractionation, saccharification, fermentation, and ex-situ nanofiltration. J. Environ. Chem. Eng., 5: 2533–2541. doi:10.1016/j.jece.2017.05.004.
  • Bouchoux, A., Roux-de Balmann, H., and Lutin, F. (2006) Investigation of nanofiltration as a purification step for lactic acid production processes based on conventional and bipolar electrodialysis operations. Sep. Purif. Technol., 52: 266–273. doi:10.1016/j.seppur.2006.05.011.
  • Li, Y. and Shahbazi, A. (2006) Lactic acid recovery from cheese whey fermentation broth using combined ultrafiltration and nanofiltration membranes. In Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals; McMillan, J.D., Adney, W.S., Mielenz, J.R., and Klasson, K.T. eds.; Humana Press: Totowa, NJ, USA, 985–996.
  • Tang, J., Wang, X.C., Hu, Y., Ngo, H.H., and Li, Y. (2017) Dynamic membrane-assisted fermentation of food wastes for enhancing lactic acid production. Bioresour. Technol., 234: 40–47. doi:10.1016/j.biortech.2017.03.008.
  • Alexandri, M., Schneider, R., and Venus, J. (2018) Membrane technologies for lactic acid separation from fermentation broths derived from renewable resources. Membranes (Basel), 8: 94–101. doi:10.3390/membranes8040094.
  • Huang, C., Xu, T., Zhang, Y., Xue, Y., and Chen, G. (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J. Memb. Sci., 288: 1–12. doi:10.1016/j.memsci.2006.11.026.
  • Moon, P.J., Parulekar, S.J., and Tsai, S.-P. (1998) Competitive anion transport in desalting of mixtures of organic acids by batch electrodialysis. J. Memb. Sci., 141: 75–89. doi:10.1016/S0376-7388(97)00292-5.
  • Wang, Q., Cheng, G., Sun, X., and Jin, B. (2006) Recovery of lactic acid from kitchen garbage fermentation broth by four-compartment configuration electrodialyzer. Process Biochem., 41: 152–158. doi:10.1016/j.procbio.2005.06.015.
  • Saxena, A., Gohil, G.S., and Shahi, V.K. (2007) Electrochemical membrane reactor: single-step separation and ion substitution for the recovery of lactic acid from lactate salts. Ind. Eng. Chem. Res., 46: 1270–1276. doi:10.1021/ie060423v.
  • Sand, G., Barkmann, S., and Engell, S. (2018) Optimization-based design of reaction-separation systems. Available online: https://pdfs.semanticscholar.org/d65a/0186ffa3d6518b1a83c5d8686ab79d101c2b.pdf (accessed on May 24, 2018).
  • Komesu, A., Wolf Maciel, M.R., Rocha de Oliveira, J.A., Da Silva Martins, L.H., and Maciel Filho, R. (2017) Purification of lactic acid produced by fermentation: focus on non-traditional distillation processes. Sep. Purif. Rev., 46: 241–254. doi:10.1080/15422119.2016.1260034.
  • Seo, Y., Hong, W.H., and Hong, T.H. (1999) Effects of operation variables on the recovery of lactic acid in a batch distillation process with chemical reactions. Korean J. Chem. Eng., 16: 556–561. doi:10.1007/BF02708131.
  • Kumar, R., Mahajani, S.M., Nanavati, H., and Noronha, S.B. (2006) Recovery of lactic acid by batch reactive distillation. J. Chem. Technol. Biotechnol., 81: 1141–1150. doi:10.1002/(ISSN)1097-4660.
  • Rao, V.V.B., Kumar, P.S., Sailu, C., and Rao, S.R.M. (2014) Recovery of lactic acid by reactive distillation. J. Appl. Sci., 14: 1289–1293. doi:10.3923/jas.2014.1289.1293.
  • Asthana, N., Kolah, A., Vu, D.T., Lira, C.T., and Miller, D.J. (2005) A continuous reactive separation process for ethyl lactate formation. Org. Process Res. Dev., 9: 599–607. doi:10.1021/op0500640.
  • Kumar, R., Nanavati, H., Noronha, S.B., and Mahajani, S.M. (2006) A continuous process for the recovery of lactic acid by reactive distillation. J Chem Technol Biotechnol, 81: 1767–1777. doi:10.1002/(ISSN)1097-4660.
  • Komesu, A., Martinez, P.F.M., Lunelli, B.H., Maciel Filho, R., and Wolf Maciel, M.R. (2015) Lactic acid purification by reactive distillation system using design of experiments. Chem. Eng. Process Intensif, 95: 26–30. doi:10.1016/j.cep.2015.05.005.
  • Lunelli, B.H. (2010) Production and control of the acrylic acid ester synthesis through lactic acid fermentation/Produção e controle da síntese do éster de ácido acrílico através da fermentação do ácido láctico, PhD Thesis, Universidade Estadual de Campinas, Sao Paulo, Brazil.
  • Daful, A.G., Haigh, K., Vaskan, P., and Görgens, J.F. (2016) Environmental impact assessment of lignocellulosic lactic acid production: integrated with existing sugar mills. Food Bioprod. Process, 99: 58–70. doi:10.1016/j.fbp.2016.04.005.
  • Xu, S., Lan, K., Li, J., He, T., and Hu, C. (2018) Separation of lactic acid from synthetic solutions and the mixture directly derived from corn stover by aqueous two phase extraction. Sep. Purif. Technol., 204: 281–289. doi:10.1016/j.seppur.2018.04.086.
  • Fu, H., Sun, Y., Teng, H., Zhang, D., and Xiu, Z. (2015) Salting-out extraction of carboxylic acids. Sep. Purif. Technol., 139: 36–42. doi:10.1016/j.seppur.2014.11.001.
  • Dai, J.-Y., Sun, Y.-Q., and Xiu, Z.-L. (2014) Separation of bio-based chemicals from fermentation broths by salting-out extraction. Eng. Life. Sci., 14: 108–117. doi:10.1002/elsc.v14.2.
  • Wei, B., Song, Z., Sun, Y., and Xiu, Z.-L. (2012) Salting-out extraction of lactic acid from fermentation broth. Chinese J. Process. Eng., 12: 2–6.
  • Yan, L., Sun, Y.-Q., and Xiu, Z.-L. (2016) Sugaring-out extraction coupled with fermentation of lactic acid. Sep. Purif. Technol., 161: 152–158. doi:10.1016/j.seppur.2016.01.049.
  • Yan, L., Sun, Y.-Q., Wang, X.-D., Fu, H.-X., Mu, Y., and Xiu, Z.-L. (2018) Partition behavior of monocarboxylic acids in salting-out extraction systems of monohydric alcohols and dipotassium phosphate. Sep. Purif. Technol., 199: 351–358. doi:10.1016/j.seppur.2018.02.006.
  • Batistella, C.B., Moraes, E.B., Maciel Filho, R., and Wolf Maciel, M.R. (2002) Molecular distillation: rigorous modeling and simulation for recovering vitamin E from vegetal oils. Appl. Biochem. Biotechnol., 98–100: 1187–1206. doi:10.1385/ABAB:98-100:1-9:1187.
  • Xu, S.-L., Zheng, T., and Xu, S.-M. (2004) The study of refining L-lactic acid by molecular distillation. J. Chem. Eng. Chinese. Univ., 18: 246–249.
  • Wei, Q., Han, Z.W., Bai, D.M., Yan, Z.H., and Zhao, X.M. (2004) Study on recovery and purification of L-lactic acid. In proceedings of the frontiers on separation science and technology, Procedings of the 4th International Conference on Separation Science and Technology, China, Singapore, World Scientific pp. 717–722.
  • Chen, L., Zeng, A., Dong, H., Li, Q., and Niu, C. (2012) A novel process for recovery and refining of L-lactic acid from fermentation broth. Bioresour. Technol., 112: 280–284. doi:10.1016/j.biortech.2012.02.100.
  • Komesu, A., Martins, P.F., Lunelli, B.H., Oliveira, J., Maciel Filho, R., and Wolf-Maciel, M.R. (2014) Evaluation of lactic acid purification from fermentation broth by hybrid short path evaporation using factorial experimental design. Sep. Purif. Technol., 136: 233–240. doi:10.1016/j.seppur.2014.09.010.
  • Yu, J., Zeng, A., Yuan, X., Zhang, X., and Ju, J. (2015) Optimizing and scale-up strategy of molecular distillation for the purification of lactic acid from fermentation broth. Sep. Sci. Technol., 6395 (article): 150623131312002. doi:10.1080/01496395.2015.1056363.
  • Alves de Oliveira, R., Komesu, A., Vaz Rossell, C.E., Wolf Maciel, M.R., and Maciel Filho, R. (2019) Concentrating second-generation lactic acid from sugarcane bagasse via hybrid short path evaporation: operational challenges. Sep. Purif. Technol., 209: 26–31. doi:10.1016/j.seppur.2018.07.012.
  • Lee, E.Z., Huh, Y.S., Jun, Y.-S., Won, H.J., Hong, Y.K., and Hong, W.H. (2008) Effect of operating variables on back-extraction characteristics of succinic acid from organic phase. Biotechnol. Bioprocess Eng., 13: 342–346. doi:10.1007/s12257-007-0184-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.