678
Views
31
CrossRef citations to date
0
Altmetric
Review

Remediation of Thorium (IV) from Wastewater: Current Status and Way Forward

, & ORCID Icon
Pages 177-202 | Received 11 Jul 2018, Accepted 26 Jun 2019, Published online: 12 Jul 2019

REFERENCES

  • Che Nor Aniza, C. Z. B.; Amran, A. M.; Wadeeah, M. A. A. Advantages of Liquid Fluoride Thorium Reactor in Comparison with Light Water Reactor. AIP Conf. Proc. 2015, 1659(1), 040001. DOI: 10.1063/1.4916861.
  • Organisation for Economic Co-Operation and Development, Nuclear Energy Agency (OECD-NEA). Introduction of Thorium in the Nuclear Fuel Cycle; Nuclear Energy Agency (NEA): Issy-les-Moulineaux, France, 2015; pp 21–32.
  • Organisation for Economic Co-Operation and Development, Nuclear Energy Agency (OECD-NEA); International Atomic Energy Agency (IAEA). Uranium Resources 2011: Production and Demand; Nuclear Energy Agency (NEA): André-Pascal, Paris, France, 2012.
  • Ismail, A. F.; Rosli, K.; Idris, W. M. R.; Sahibin, A. R. Penentuan Kepekatan Radionuklid Tabii Dan Indeks Bahaya Radiologi Akibat Penggunaan Condisoil® Ke Atas Penanaman Hibiscus Cannabinus (kenaf). Sains Malays. 2018, 47(5), 893–901. DOI: 10.17576/jsm-2018-4705-04.
  • Chernaik, M.;. Guidebook for Evaluating Mining Project EIAs; Environmental Law Alliance Worldwide: Eugene, Oregon, United States, 2010; pp 1–22. ISBN# 978-0-9821214-36.
  • Committee on Uranium Mining in Virginia; Committee on Earth Resources; National Research Council. Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety, and Regulatory Aspects of Uranium Mining and Processing in Virginia; National Academies Press: Washington, D.C, United States, 2011.
  • Reta, G.; Dong, X.; Li, Z.; Su, B.; Hu, X.; Bo, H.; Yu, D.; Wan, H.; Liu, J.; Li, Y.;; et al. Environmental Impact of Phosphate Mining and Beneficiation: Review. Int. J. Hydrol. 2018, 2(4), 424–432. DOI: 10.15406/ijh.2018.02.00106.
  • Sandhu, D.; Singh, A.; Duranceau, S. J.; Nam, B. H.; Mayo, T.; Wang, D. Fate and Transport of Radioactive Gypsum Stack Water Entering the Floridan Aquifer Due to a Sinkhole Collapse. Sci. Rep. 2018, 8, 1–10. DOI: 10.1038/s41598-018-29541-0.
  • Liu, H.;. Rare Earths: Shades of Grey, Can China Continue to Fuel Our Global Clean & Smart Future; China Water Risk (CWR): Hong Kong, 2016; pp 15.
  • Hurst, C.;. China’s Rare Earth Elements Industry: What Can the West Learn?; Institute for the Analysis of Global Security (IAGS): Washington, DC, 2010.
  • Hurst, C.; The Rare Earth Dilemma : China’s Rare Earth Environmental and Safety Nightmare. The Cutting Edge, 15 November, 2010. https://thecuttingedgenews.com/index.php?article=21777 (accessed April 5, 2019).
  • International Atomic Energy Agency (IAEA). Safety Standards: Classification of Radioactive Waste - No. GSG-1; International Atomic Energy Agency (IAEA): Vienna, Austria, 2009.
  • International Atomic Energy Agency (IAEA). Safety Series: Principles of Radioactive Waste Management Safety Fundamentals – No. 111-F; International Atomic Energy Agency (IAEA): Vienna, Austria, 1995.
  • International Atomic Energy Agency (IAEA). Technical Reports Series: Standardization of Radioactive Waste Categories – No 101; International Atomic Energy Agency (IAEA): Vienna, Austria, 1970.
  • International Atomic Energy Agency (IAEA). Technical Reports Series: Chemical Precipitation Processes for the Treatment of Aqueous Radioactive Waste - No 337; International Atomic Energy Agency (IAEA): Vienna, Austria, 1992.
  • International Atomic Energy Agency (IAEA). Technical Reports Series: Techniques and Practices for Pretreatment of Low and Intermediate Level Solid and Liquid Radioactive Wastes – No 272; International Atomic Energy Agency (IAEA): Vienna, Austria, 1987.
  • International Atomic Energy Agency (IAEA). Safety Series: Basic Factors for the Treatment and Disposal of Radioactive Wastes – No 24; International Atomic Energy Agency (IAEA): Vienna, Austria, 1967.
  • Wickleder, M. S.; Fourest, B.; Dorhout, P. K. Thorium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds.; Springer: Netherlands, 2006; Vol. 3, pp 52.
  • Rudnick, R. L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H. D., Turekian, K. K., Eds.; Elsevier: Amsterdam, 2004; Vol. 3, pp 1–64.
  • Che Zainul Bahri, C. N. A.; Ismail, A. F.; Amran, A. M. Synthesis of Thorium Tetrafluoride (thf4) by Ammonium Hydrogen Difluoride (NH4HF2). Nucl. Eng. Technol. 2018, 51(3), 792–799. DOI: 10.1016/j.net.2018.12.023.
  • Che Zainul Bahri, C. N. A.; Ismail, A. F.; Amran, A. M. Extraction and Purification of Thorium Oxide (tho2) from Monazite Mineral. Sains Malays. 2018, 47(8), 1873–1882. DOI: 10.17576/jsm-2018-4708-28.
  • Langmuir, D.; Herman, J. S. The Mobility of Thorium in Natural Waters at Low Temperatures. Geochim. Cosmochim. Acta. 1980, 44(11), 1753–1766. DOI: 10.1016/0016-7037(80)90226-4.
  • Namieśnik, J.; Rabajczyk, A. The Speciation and Physico-chemical Forms of Metals in Surface Waters and Sediments. Chem. Speciation. Bioavailability. 2010, 22(1), 1–24. DOI: 10.3184/095422910X12632119406391.
  • Kumar, A.; Ali, M.; Pandey, B. N. Understanding the Biological Effects of Thorium and Developing Efficient Strategies for Its Decorporation and Mitigation. BARC Newsletter. 2013, 335, 55–60.
  • Huisman, J. L.; Schouten, G.; Schultz, C. Biologically Produced Sulphide for Purification of Process Streams, Effluent Treatment and Recovery of Metals in the Metal and Mining Industry. Hydrometallurgy. 2006, 83, 106–113. DOI: 10.1016/j.hydromet.2006.03.017.
  • Brbooti, M. M.; Abid, B. A.; Al-shuwaiki, N. M. Removal of Heavy Metals Using Chemicals Precipitation. Eng. Technol. J. 2011, 29(3), 595–612.
  • Wang, L. K.; Vaccari, D. A.; Li, Y.; Shammas, N. K. Chemical Precipitation. In Physicochemical Treatment Processes, Handbook of Environmental Engineering; Wang, L. K., Hung, Y. T., Shammas, N. K., Eds.; Humana Press: Totowa, New Jersey, United States, 2005; Vol. 3, pp 141–197.
  • Ayres, D. M.; Davis, A. P.; Gietka, P. M. Removing Heavy Metals from Wastewater; Engineering Research Center Report: University of Maryland, United States, 1994.
  • Gitari, W. M.; Petrik, L. F.; Key, D. L.; Okujeni, C. Partitioning of Major and Trace Inorganic Contaminants in Fly Ash Acid Mine Drainage Derived Solid Residues. Int. J. Environ. Sci. Technol. 2010, 7(3), 519–534. DOI: 10.1007/BF03326161.
  • Madzivire, G.; Maleka, P. P.; Vadapalli, V. R. K.; Gitari, W. M.; Lindsay, R.; Petrik, L. F. Fate of the Naturally Occurring Radioactive Materials during Treatment of Acid Mine Drainage with Coal Fly Ash and Aluminium Hydroxide. J. Environ. Manage. 2014, 133, 12–17. DOI: 10.1016/j.jenvman.2013.11.041.
  • Lee, C. S.; Robinson, J.; Chong, M. F. A Review on Application of Flocculants in Wastewater Treatment. Process Saf. Environ. Prot. 2014, 92(6), 489–508. DOI: 10.1016/j.psep.2014.04.010.
  • Tzoupanos, N. D.; Zouboulis, A. I. Coagulation-flocculation Processes in Water/wastewater Treatment : The Application of New Generation of Chemical Reagents. In 6th International Conference on Heat Transfer, Thermal Engineering and Environment (HTE’08), Rhodes, Greece, August 20-22, 2008; Cussler, E. L., Paul, D. R., Price, P. E., Vrentas, J. S., Krope, J., Sohrab, S. H., Catrakis, H. J., Kobasko, N., Eds; WSEAS Press: Athens, Greece, 2008; pp 309–317.
  • Wenchao, Y.; Yadan, G.; Bai, G.; Ping, L. Research Advances of Chemical Treatment of Wastewater with Low Concentration of Uranium. In 4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016), Hangzhou, China, Jan 23-24, 2016; Zhu, J., Yao, G., Eds; Atlantis Press: Paris, France, 2016; pp 235–239.
  • Syed, H. S. S. A.; Khairuddin, M. K.; Nik, M. N. I. Treatment of Aqueous Radioactive Wastes Containing Uranium, Thorium and Radium Radionuclides by Chemical Precipitation and Soil Sorbents. Presented at the Malaysian Science and Technology Congress 1999: Update of R and D Findings and Commercialisation, Symposium B: Environment and Renewable Resources, Kuching, Malaysia, Nov 8-10, 1999.
  • Hlainga, T. M.; Tarb, A. T.; Myoc, T. Z.; Wind, B. B. M. Study on the Treatment of Liquid Waste from Rare Earth Processing by Chemical Precipitation. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 27(1), 52–60.
  • Borai, E. H.; Ahmed, I. M.; Shahr El-Din, A. M.; Abd El-Ghany, M. S. Development of Selective Separation Method for Thorium and Rare Earth Elements from Monazite Liquor. J. Radioanal. Nucl. Chem. 2018, 316(2), 443–450. DOI: 10.1007/s10967-018-5814-4.
  • Vijayalakshmi, R.; Mishra, S. L.; Singh, H.; Gupta, C. K. Processing of Xenotime Concentrate by Sulphuric Acid Digestion and Selective Thorium Precipitation for Separation of Rare Earths. Hydrometallurgy. 2001, 61(2), 75–80. DOI: 10.1016/S0304-386X(00)00159-6.
  • Zhu, Z.; Pranolo, Y.; Cheng, C. Y. Separation of Uranium and Thorium from Rare Earths for Rare Earth Production - A Review. Miner. Eng. 2015, 77, 185–196. DOI: 10.1016/j.mineng.2015.03.012.
  • Anggraini, M.; Sarono, B.; Waluyo, S. Uranium and Thorium Precipitation from Solution of Tin Slag II. Eksplorium. 2015, 36(2), 125–132. DOI: 10.17146/eksplorium.2015.36.2.2776.
  • Oncel, M. S.; Muhcu, A.; Demirbas, E.; Kobya, M. A Comparative Study of Chemical Precipitation and Electrocoagulation for Treatment of Coal Acid Drainage Wastewater. J. Environ. Chem. Eng. 2013, 1(4), 989–995. DOI: 10.1016/j.jece.2013.08.008.
  • Yadav, M.; Gupta, R.; Sharma, R. K. Green and Sustainable Pathways for Wastewater Purification. In Advances in Water Purification Techniques. Meeting the Needs of Developed and Developing Countries; Ahuja, S., Ed.; Elsevier: Amsterdam, Netherlands, 2019; pp 368.
  • Yueran, N. I.; Yadan, G. U. O.; Weiwei, O.; Peng, L. I. Development of Research on Treatment Technology for Low-concentration Uranium. In 4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016), Hangzhou, China, January 23-24, 2016; Zhu, J., Yao, G., Eds.; Atlantis Press: Paris, France, 2016; pp 235–239.
  • Ku, Y.; Peters, R. W. The Effect of Complexing Agents on the Precipitation and Removal of Copper and Nickel from Solution. Part. Sci. Technol. 1988, 6(4), 441–446. DOI: 10.1080/02726358808906516.
  • Sill, C. W.;. Precipitation of Actinides as Fluorides or Hydroxides for High-resolution Alpha Spectrometry. Nucl. Chem. Waste Manage. 1987, 7(3–4), 201–215. DOI: 10.1016/0191-815X(87)90066-0.
  • Shin, Y. H.; Shin, N. C.; Veriansyah, B.; Kim, J.; Lee, Y. W. Supercritical Water Oxidation of Wastewater from Acrylonitrile Manufacturing Plant. J. Hazard. Mater. 2009, 163(2–3), 1142–1147. DOI: 10.1016/j.jhazmat.2008.07.069.
  • Qin, Q.; Wang, S.; Wang, H.; Ma, H.; Chen, K.; Qiao, Y.; He, L.; Qian, Z.; Liu, X.; Li, Z.;; et al. Treatment of Radioactive Spent Extraction Solvent by Supercritical Water Oxidation. J. Radioanal. Nucl. Chem. 2017, 314(2), 1169–1176. DOI: 10.1007/s10967-017-5445-1.
  • Aly, M. M.; Hamza, M. F. A Review: Studies on Uranium Removal Using Different Techniques. Overview. J. Dispersion Sci. Technol. 2013, 34(2), 182–213. DOI: 10.1080/01932691.2012.657954.
  • Huang, F.; Xu, Y.; Liao, S.; Yang, D.; Hsieh, Y.; Wei, Q. Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application for Adsorption of Metal Ions. Materials. 2013, 6(3), 969–980. DOI: 10.3390/ma6030969.
  • Ladshaw, A. P.; Wiechert, A. I.; Das, S.; Yiacoumi, S.; Tsouris, C. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature. Materials. 2017, 10, 1286. DOI: 10.3390/ma10111268.
  • Mohd Zahri, N. A.; Md Jamil, S. N. A.; Abdullah, L. C.; Yaw, T. C. S.; Mobarekeh, M. N.; Huey, S. J.; Mohd Rapeia, N. S. Improved Method for Preparation of Amidoxime Modified Poly(acrylonitrile-co-acrylic Acid): Characterizations and Adsorption Case Study. Polymers. 2015, 7, 1205–1220. DOI: 10.3390/polym7071205.
  • Heshmati, H.; Gilani, H. G.; Torab-Mostaedi, M.; Haidary, A. Adsorptive Removal of Thorium (iv) from Aqueous Solutions Using Synthesized Polyamidoxime Chelating Resin: Equilibrium, Kinetic, and Thermodynamic Studies. J Dispers. Sci. Technol. 2014, 35(4), 501–509. DOI: 10.1080/01932691.2013.796886.
  • Chiarizia, R.; Ferraro, J. R.; Horwitz, E. P.; D’Arcy, K. A. Uptake of Metal Ions by a New Chelating Ion- Exchange Resin Part 1: Acid Dependencies of Actinide Ions. Solvent Extr. Ion Exch. 1993, 11(5), 943–966. DOI: 10.1080/07366299308918195.
  • Sadeek, S. A.; Moussa, E. M. M.; El-Sayed, M. A.; Amine, M. M.; Abd El-Magied, M. O. Uranium (VI) and Thorium (IV) Adsorption Studies on Chelating Resin Containing Pentaethylenehexamine as a Functional Group. J Dispers. Sci. Technol. 2014, 35(7), 926–933. DOI: 10.1080/01932691.2013.809507.
  • International Atomic Energy Agency (IAEA). Technical Reports Series: Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers - No-408; International Atomic Energy Agency (IAEA): Vienna, Austria, 2002.
  • Worch, E.;. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modelling; De Gruyter: Berlin, Germany, 2012.
  • Douglas, L. M.; Giorgio, C.; Carmen, M. Y. Adsorption and Ion Exchange. In Perry’s Chemical Engineers’ Handbook, 7th; Perry, R. H., Green, D. W., Maloney, J. O., Eds.; McGraw-Hill: Columbus, OH, 1997, 16–4.
  • Wang, J.; Chen, Z.; Shao, D.; Li, Y.; Xu, Z.; Cheng, C.; Asiri, A. M.; Marwani, H. M.; Hu, S. Adsorption of U(VI) on Bentonite in Simulation Environmental Conditions. J. Mol. Liq. 2017, 242, 678–684. DOI: 10.1016/j.molliq.2017.07.048.
  • Sulyman, M.; Namiesnik, J.; Gierak, A. Low-cost Adsorbents Derived from Agricultural By-products/wastes for Enhancing Contaminant Uptakes from Wastewater: A Review. Pol. J. Environ. Stud. 2017, 26(2), 479–510. DOI: 10.15244/pjoes/66769.
  • Matijašević, S.; Daković, A.; Tomašević-Čanović, M.; Stojanović, M.; Uranium, I. D. (VI) Adsorption on Surfactant Modified Heulandite/clinoptilolite Rich Tuff. J. Serbian Chem. Soc. 2006, 71(12), 1323–1331. DOI: 10.2298/JSC0612323M.
  • Neck, V.; Müller, R.; Bouby, M.; Altmaier, M.; Rothe, J.; Denecke, M. A.; Kim, J. I. Solubility of Amorphous Th(IV) Hydroxide - Application of LIBD to Determine the Solubility Product and EXAFS for Aqueous Speciation. Radiochim. Acta. 2002, 90(9–11), 485–494. DOI: 10.1524/ract.2002.90.9-11_2002.485.
  • Higashi, S.;. Determination of the Solubility of Thorium Hydroxide. Bull. Inst. Chem. Res. Kyoto Univ. 1959, 37, 200–206.
  • Nisbet, H.; Migdisov, A.; Xu, H.; Guo, X.; van Hinsberg, V.; Williams-Jones, A. E.; Boukhalfa, H.; Roback, R. An Experimental Study of the Solubility and Speciation of Thorium in Chloride-bearing Aqueous Solutions at Temperatures up to 250 °C. Geochim. Cosmochim. Acta. 2018, 239, 363–373. DOI: 10.1016/j.gca.2018.08.001.
  • Organisation for Economic Co-Operation and Development, Nuclear Energy Agency (OECD-NEA). Chemical Thermodynamics: Chemical Thermodynamics of Thorium; OECD: Paris, France, 2008; Vol. 11.
  • Kim, E.; Osseo-Asare, K. Aqueous Stability of Thorium and Rare Earth Metals in Monazite Hydrometallurgy: Eh-ph Diagrams for the Systems Th-, Ce-,La-,Nd-(PO4)-(SO4)-H2O at 25 °C. Hydrometallurgy. 2012, 113–114, 67–78. DOI: 10.1016/j.hydromet.2011.12.007.
  • Ekberg, C.; Albinsson, Y.; Comarmond, M. J.; Brown, P. L. Studies on the Complexation Behavior of Thorium (IV). 1. Hydrolysis Equilibria. J. Solution Chem. 2000, 29(1), 63–86. DOI: 10.1023/A:1005166517699.
  • Ho, Y. S.; Porter, J. F.; McKay, G. Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems. Water. Air. Soil Pollut. 2002, 141(1–4), 1–33. DOI: 10.1023/A:1021304828010.
  • Zhao, G.; Wu, X.; Tan, X.; Wang, X. Sorption of Heavy Metal Ions from Aqueous Solutions: A Review. Open Colloid Sci. J. 2011, 4, 19–31. DOI: 10.2174/1876530001104010019.
  • Tan, K. L.; Hameed, B. H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. DOI: 10.1016/j.jtice.2017.01.024.
  • Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156(1), 11–24. DOI: 10.1016/j.cej.2009.10.029.
  • Jiménez-Castañeda, M. E.; Medina, D. I. Use of Surfactant-modified Zeolites and Clays for the Removal of Heavy Metals from Water. Water. 2017, 9, 235. DOI: 10.3390/w9040235.
  • Kaygun, A. K.; Akyil, S. Study of the Behaviour of Thorium Adsorption on PAN/zeolite Composite Adsorbent. J. Hazard. Mater. 2007, 147, 357–362. DOI: 10.1016/j.jhazmat.2007.01.020.
  • Al-shaybe, M.; Khalili, F. Adsorption of Thorium (IV) and Uranium (VI) by Tulul Al- Shabba Zeolitic Tuff, Jordan. Jordan J. Earth Environ. Sci. 2009, 2(1), 108–119.
  • Guerra, D. L.; Viana, R. R.; Airoldi, C. Adsorption of Thorium Cation on Modified Clays MTTZ Derivative. J. Hazard. Mater. 2009, 168(2–3), 1504–1511. DOI: 10.1016/j.jhazmat.2009.03.034.
  • Talip, Z.; Eral, M.; Hicsonmez, U. Adsorption of Thorium from Aqueous Solutions by Perlite. J. Environ. Radioact. 2009, 100(2), 139–143. DOI: 10.1016/j.jenvrad.2008.09.004.
  • Khalili, F. I.; Salameh, N. H.; Shaybe, M. M. Sorption of Uranium (VI) and Thorium (IV) by Jordanian Bentonite. J. Chem. 2013, 2013, 1–13. DOI: 10.1155/2013/586136.
  • Ali, O.; Osman, H. H.; Sayed, S. A.; Shalabi, M. E. H. The Removal of Uranium and Thorium from Their Aqueous Solutions via Glauconite. Desalin. Water Treat. 2015, 53(3), 760–767. DOI: 10.1080/19443994.2013.844086.
  • Nurliati, G.; Krisnandi, Y. K.; Sihombing, R.; Salimin, Z. Studies of Modification of Zeolite by Tandem Acid-base Treatments and Its Adsorptions Performance Towards Thorium. Atomic Indones. 2015, 41(2), 87–95. DOI: 10.17146/aij.2015.382.
  • Erden, K. E.; Donat, R. Removal of Thorium (IV) from Aqueous Solutions by Natural Sepiolite. Radiochim. Acta. 2017, 105(3), 187–196. DOI: 10.1515/ract-2016-2667.
  • Yaghoobi-Rahni, S.; Rezaei, B.; Mirghaffari, N. Bentonite Surface Modification and Characterization for High Selective Phosphate Adsorption from Aqueous Media and Its Application for Wastewater Treatments. J. Water Reuse Desalin. 2017, 7(2), 175–186. DOI: 10.2166/wrd.2016.212.
  • Piccin, J. S.; Cadaval Jr, T. R. S.; de Pinto, L. A. A.; Luiz Dotto, G. L. Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp 19–51.
  • Gok, C.; Aytas, S. Biosorption of Uranium and Thorium by Biopolymers. In The Role of Colloidal Systems in Environmental Protection; Fanun, M., Ed.; Elsevier: Amsterdam, Netherlands, 2014; pp 363–395.
  • Kumar, N. S.; Min, K. Phenolic Compounds Biosorption onto Schizophyllum Commune Fungus: FTIR Analysis, Kinetics and Adsorption Isotherms Modelling. Chem. Eng. J. 2011, 168(2), 562–571. DOI: 10.1016/j.cej.2011.01.023.
  • Xiao, M.; Hu, J. C.; Liu, W. L.; Nie, F. M. Application of Biopolymer-based Adsorbents in Removal of Heavy Metals. Adv. Mater. Res. 2014, 1048, 373–377. DOI: 10.4028/www.scientific.net/AMR.1048.373.
  • Yang, S. K.; Tan, N.; Yan, X. M.; Chen, F.; Long, W.; Lin, Y. C. Thorium (IV) Removal from Aqueous Medium by Citric Acid Treated Mangrove Endophytic Fungus Fusarium Sp. #ZZF51. Mar. Pollut. Bull. 2013, 74(1), 213–219. DOI: 10.1016/j.marpolbul.2013.06.055.
  • Anirudhan, T. S.; Sreekumari, S. S.; Jalajamony, S. An Investigation into the Adsorption of Thorium (IV) from Aqueous Solutions by a Carboxylate-functionalised Graft Copolymer Derived from Titanium Dioxide-densified Cellulose. J. Environ. Radioact. 2013, 116, 141–147. DOI: 10.1016/j.jenvrad.2012.10.001.
  • Liu, Z.; Wang, H.; Liu, C.; Jiang, Y.; Yu, G.; Mu, X.; Wang, X. Magnetic Cellulose–Chitosan Hydrogels Prepared from Ionic Liquids as Reusable Adsorbent for Removal of Heavy Metal Ions. Chem. Commun. 2012, 48, 7350–7352. DOI: 10.1039/c2cc17795a.
  • Atta, A. M.; Akl, Z. F. Removal of Thorium from Water Using Modified Magnetite Nanoparticles Capped with Rosin Amidoxime. Mater. Chem. Phys. 2015, 163, 253–261. DOI: 10.1016/j.matchemphys.2015.07.038.
  • Karimi, M.; Milani, S. A.; Abolgashemi, H. Kinetic and Isotherm Analyses for Thorium (IV) Adsorptive Removal from Aqueous Solutions by Modified Magnetite Nanoparticle Using Response Surface Methodology (RSM). J. Nucl. Mater. 2016, 479, 174–183. DOI: 10.1016/j.jnucmat.2016.07.020.
  • Gado, M. A.;. Sorption of Thorium Using Magnetic Graphene Oxide Polypyrrole Composite Synthesized from Natural Source. Sep. Sci. Technol. 2018, 53(13), 2016–2033. DOI: 10.1080/01496395.2018.1443130.
  • Yamaura, M.; Alves, D. Synthesis and Characterization of Magnetic Adsorbent Prepared by Magnetite Nanoparticles and Zeolite from Coal Fly Ash. J. Mater. Sci. 2013, 48(14), 5093–5101. DOI: 10.1007/s10853-013-7297-6.
  • Morsy, A. M. A.;. Performance of Magnetic Talc Titanium Oxide Composite for Thorium Ions Adsorption from Acidic Solution. Environ. Technol. Innovations. 2017, 8, 399–410. DOI: 10.1016/j.eti.2017.09.004.
  • Zhang, J.; Zhang, S.; Wang, Y.; Zeng, J. Composite Magnetic Microspheres: Preparation and Characterization. J. Magn. Magn. Mater. 2007, 309(2), 197–201. DOI: 10.1016/j.jmmm.2006.06.035.
  • Hritcu, D.; Humelnicu, D.; Dodi, G.; Popa, M. I. Magnetic Chitosan Composite Particles: Evaluation of Thorium and Uranyl Ion Adsorption from Aqueous Solutions. Carbohydr. Polym. 2012, 87(2), 1185–1191. DOI: 10.1016/j.carbpol.2011.08.095.
  • Anirudhan, T. S.; Rijith, S.; Tharun, A. R. Adsorptive Removal of Thorium (IV) from Aqueous Solutions Using Poly(methacrylic Acid)-grafted Chitosan/bentonite Composite Matrix: Process Design and Equilibrium Studies. Colloids Surf. A. 2010, 368(1–3), 13–22. DOI: 10.1016/j.colsurfa.2010.07.005.
  • Humelnicu, D.; Dinu, M. V.; Drǎgan, E. S. Adsorption Characteristics of (UO2)2+ and Th4+ Ions from Simulated Radioactive Solutions onto Chitosan/clinoptilolite Sorbents. J. Hazard. Mater. 2011, 185(1), 447–455. DOI: 10.1016/j.jhazmat.2010.09.053.
  • Anirudhan, T. S.; Rejeena, S. R. Thorium (IV) Removal and Recovery from Aqueous Solutions Using Tannin-modified Poly (glycidylmethacrylate)-grafted Zirconium Oxide Densified Cellulose. Ind. Eng. Chem. Res. 2011, 50(23), 13288–13298. DOI: 10.1021/ie2015679.
  • Keshtkar, A. R.; Hassani, M. A. Biosorption of Thorium from Aqueous Solution by Ca-pretreated Brown Algae Cystoseira Indica. Korean J. Chem. Eng. 2014, 31(2), 289–295. DOI: 10.1007/s11814-013-0220-7.
  • Xu, J.; Zhou, L.; Jia, Y.; Liu, Z.; Adesina, A. A. Adsorption of Thorium (IV) Ions from Aqueous Solution by Magnetic Chitosan Resins Modified with Triethylene-tetramine. J. Radioanal. Nucl. Chem. 2015, 303, 347–356. DOI: 10.1007/s10967-014-3227-6.
  • Bhalara, P. D.; Punetha, D.; Balasubramanian, K. Kinetic and Isotherm Analysis for Selective Thorium (IV) Retrieval from Aqueous Environment Using Eco-friendly Cellulose Composite. Int. J. Environ. Sci. Technol. 2015, 12(10), 3095–3106. DOI: 10.1007/s13762-014-0682-0.
  • Zhou, L.; Jia, Y.; Peng, J. Competitive Adsorption of Uranium (VI) and Thorium (IV) Ions from Aqueous Solution Using Triphosphate-crosslinked Magnetic Chitosan Resins. J. Radioanal. Nucl. Chem. 2014, 302(1), 1331–1340. DOI: 10.1007/s10967-014-3125-y.
  • Anirudhan, T. S.; Deepa, J. R.; Shainy, F. Thorium (IV) Recovery from Water and Sea Water Using Surface Modified Nanocellulose/nanobentonite Composite. Process Design, J. Polym. Environ. 2017, 25(4), 1147–1162. DOI: 10.1007/s10924-016-0892-2.
  • Gado, M. A.; Morsy, A. M. A. Thorium Adsorption from Waste Effluents by Phosphate-enhanced Chitin. Radiochemistry. 2017, 59(5), 500–506. DOI: 10.1134/S1066362217050101.
  • Ding, H.; Zhang, X.; Yang, H.; Luo, X.; Lin, X. Highly Efficient Extraction of Thorium from Aqueous Solution by Fungal Mycelium-based Microspheres Fabricated via Immobilization. Chem. Eng. J. 2019, 368, 37–50. DOI: 10.1016/j.cej.2019.02.116.
  • Barakat, M. A.;. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 2011, 4, 361–377. DOI: 10.1016/j.arabjc.2010.07.019.
  • Zafar, S.; Khalid, N.; Mirza, M. L. Sequestering of Thorium Ions from Aqueous Media on Rice Husk: Equilibrium, Kinetic and Thermodynamic Studies. Radiochim. Acta. 2015, 103(5), 385–395. DOI: 10.1515/ract-2014-2294.
  • Wanying, W.; Guangcha, Y.; Xiaowen, Z.; Zhumei, C.; Xiaofeng, Z.; Diyun, C. Adsorption Behavior of Modified Rice Straw to Thorium. Nucl. Tech. 2015, 38(4), 040301. DOI: 10.11889/j.0253-3219.2015.hjs.38.040301.
  • Oyewo, O. A.; Onyango, M. S.; Wolkersdorfer, C. Application of Banana Peels Nanosorbent for the Removal of Radioactive Minerals from Real Mine Water. J. Environ. Radioact. 2016, 164, 369–376. DOI: 10.1016/j.jenvrad.2016.08.014.
  • Huang, Y.; Hu, Y.; Chen, L.; Yang, T.; Huang, H.; Shi, R.; Lu, P.; Zhong, C. Selective Biosorption of Thorium (IV) from Aqueous Solutions by Ginkgo Leaf. PLoS ONE. 2018, 13, 3. DOI: 10.1371/journal.pone.0193659.
  • Varala, S.; Kumari, A.; Dharanija, B.; Bhargava, S. K.; Parthasarathy, R.; Satyavathi, B. Removal of Thorium (IV) from Aqueous Solutions by Deoiled Karanja Seed Cake: Optimization Using Taguchi Method, Equilibrium, Kinetic and Thermodynamic Studies. J. Environ. Chem. Eng. 2016, 4(1), 405–417. DOI: 10.1016/j.jece.2015.11.035.
  • Zhirong, L.; Rong, Y.; Xinhuai, S. Adsorption of Th (IV) by Peat Moss. Desalin. Water Treat. 2011, 28(1–3), 196–201. DOI: 10.5004/dwt.2011.2265.
  • Abbasizadeh, S.; Keshtkar, A. R.; Mousavian, M. A. Preparation of a Novel Electrospun Polyvinyl Alcohol/titanium Oxide Nanofiber Adsorbent Modified with Mercapto Groups for Uranium (VI) and Thorium (IV) Removal from Aqueous Solution. Chem. Eng. J. 2013, 220, 161–171. DOI: 10.1016/j.cej.2013.01.029.
  • Jin, C.; Hu, J.; Wang, J.; Xie, C.; Tong, Y.; Zhang, L.; Zhou, J.; Guo, X.; Wu, G. An amidoximated-UHMEPE Fiber for Selective and High Efficient Removal of Uranyl and Thorium from Acid Aqueous Solution. Adv. Chem. Eng. Sci. 2017, 7, 45–59. DOI: 10.4236/aces.2017.71005.
  • Savva, I.; Efstathiou, M.; Krasia-Christoforou, T.; Pashalidis, I. Adsorptive Removal of U (VI) and Th (IV) from Aqueous Solutions Using Polymer-based Electrospun PEO/PLLA Fibrous Membranes. J. Radioanal. Nucl. Chem. 2013, 298(3), 1991–1997. DOI: 10.1007/s10967-013-2657-x.
  • Akkaya, R.;. Uranium and Thorium Adsorption from Aqueous Solution Using a Novel Polyhydroxyethylmethacrylate-pumice Composite. J. Environ. Radioact. 2013, 120, 58–63. DOI: 10.1016/j.jenvrad.2012.11.015.
  • Duan, G.; Zhong, Q.; Bi, L.; Yang, L.; Liu, T.; Shi, X.; Wu, W. The Poly(acrylonitrule-co-acrylic Acid)-graft- β-cyclodextrin Hydrogel for thorium(IV) Adsorption. Polymers. 2017, 9, 201. DOI: 10.3390/polym9060201.
  • Kumar, V. V.; Kumar, C. R.; Suresh, A.; Jayalakshmi, S.; Mudali, U. K.; Sivaraman, N. Evaluation of Polybenzimidazole-based Polymers for the Removal of Uranium, Thorium and Palladium from Aqueous Medium. R. Soc. Open Sci. 2018, 5, 6. DOI: 10.1098/rsos.171701.
  • Vu, D.; Li, Z.; Zhang, H.; Wang, W.; Wang, Z.; Xu, X.; Dong, B.; Wang, C. Adsorption of Cu (II) from Aqueous Solution by Anatase Mesoporous Tio2 Nanofibers Prepared via Electrospinning. J. Colloid Interface Sci. 2012, 367(1), 429–435. DOI: 10.1016/j.jcis.2011.09.088.
  • Alipour, D.; Keshtkar, A. R.; Moosavian, M. A. Adsorption of Thorium (IV) from Simulated Radioactive Solutions Using a Novel Electrospun PVA/TiO2/ZnO Nanofiber Adsorbent Functionalized with Mercapto Groups: Study in Single and Multi-component Systems. Appl. Surf. Sci. 2016, 366, 19–29. DOI: 10.1016/j.apsusc.2016.01.049.
  • Biniak, S.; Szymański, G.; Siedlewski, J.; Światkoski, A. The Characterization of Activated Carbons with Oxygen and Nitrogen Surface Groups. Carbon. 1997, 35(12), 1799–1810. DOI: 10.1016/S0008-6223(97)00096-1.
  • Kütahyali, C.; Eral, M. Sorption Studies of Uranium and Thorium on Activated Carbon Prepared from Olive Stones: Kinetic and Thermodynamic Aspects. J. Nucl. Mater. 2010, 396(2–3), 251–256. DOI: 10.1016/j.jnucmat.2009.11.018.
  • Loukia, H.; Pashalidis, I. Thorium Removal from Acidic Aqueous Solutions by Activated Biochar Derived from Cactus Fibres. Desalin. Water Treat. 2016, 57(57), 27864–27868. DOI: 10.1080/19443994.2016.1168580.
  • Wang, Z.; Brown, A. T.; Tan, K.; Chabal, Y. J.; Balkus, K. J. Selective Extraction of Thorium from Rare Earth Elements Using Wrinkled Mesoporous Carbon. J. Am. Chem. Soc. 2018, 140(44), 14735–14739. DOI: 10.1021/jacs.8b07610.
  • Mahmoud, M. A.; Abutaleb, A.; Maafa, I. M. H.; Qudsieh, I. Y.; Elshehy, E. A. Synthesis of Polyvinylpyrrolidone Magnetic Activated Carbon for Removal of Th (IV) from Aqueous Solution. Environ. Nanotechnol. Monit. Manage. 2019, 11. DOI: 10.1016/j.enmm.2018.10.006.
  • Chen, M.; Li, Z.; Geng, Y.; Zhao, H.; He, S.; Li, Q.; Zhang, L. Adsorption Behavior of Thorium on N,N,N′,N′-tetraoctyldiglycolamide (TODGA) Impregnated Graphene Aerogel. Talanta. 2018, 181, 311–317. DOI: 10.1016/j.talanta.2018.01.020.
  • Xie, Y.; Powell, B. A. Linear Free Energy Relationship for Actinide Sorption to Graphene Oxide. ACS Appl. Mater. Interfaces. 2018, 10(38), 32086–32092. DOI: 10.1021/acsami.8b08478.
  • Pan, N.; Li, L.; Ding, J.; Wang, R.; Jin, Y.; Xia, C. A Schiff Base/quaternary Ammonium Salt Bifunctional Graphene Oxide as an Efficient Adsorbent for Removal of Th(IV)/U(VI). J. Colloid Interface Sci. 2017, 508, 303–312. DOI: 10.1016/j.jcis.2017.08.068.
  • Pan, N.; Li, L.; Ding, J.; Li, S.; Wang, R.; Jin, Y.; Wang, X.; Xia, C. Preparation of Graphene Oxide-manganese Dioxide for Highly Efficient Adsorption and Separation of Th(IV)/U(VI). J. Hazard. Mater. 2016, 309, 107–115. DOI: 10.1016/j.jhazmat.2016.02.012.
  • Xiao, J.; Song, W.; Hu, R.; Chen, L.; Tian, X. One-step Arc-produced Amino-functionalized Graphite-encapsulated Magnetic Nanoparticles for the Efficient Removal of Radionuclides. ACS Appl. Nano Mater. 2019, 2(1), 385–394. DOI: 10.1021/acsanm.8b01970.
  • Chen, J. P.; Wu, S. Acid/base-treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties. Langmuir. 2004, 20(6), 2233–2242. DOI: 10.1021/la0348463.
  • Salem, N. A.; Ebrahim, Y. S. M. Adsorption Kinetic and Mechanism Studies of Thorium on Nitric Acid Oxidized Activated Carbon. Desalin. Water Treat. 2016, 57(58), 28313–28322. DOI: 10.1080/19443994.2016.1184592.
  • Liu, C.; Hsu, P.; Xie, J.; Zhao, J.; Wu, T.; Wang, H.; Liu, W.; Zhang, J.; Chu, S.; Cui, Y. A Half-wave Rectified Alternating Current Electrochemical Method for Uranium Extraction from Seawater. Nat. Energy. 2017, 2(4), 17007. DOI: 10.1038/nenergy.2017.7.
  • Lu, X.; Zhang, D.; Tesfay, R. A.; Liu, C.; Yang, Z.; Guo, S.; Xiao, S.; Ouyang, Y. Synthesis of Amidoxime-grafted Activated Carbon Fibers for Efficient Recovery of Uranium (VI) from Aqueous Solution. Ind. Eng. Chem. Res. 2017, 56(41), 11936–11947. DOI: 10.1021/acs.iecr.7b02690.
  • Zhang, Z.; Dong, Z.; Dai, Y.; Xiao, S.; Cao, X.; Liu, Y.; Guo, W.; Luo, M.; Le, Z. Amidoxime-functionalized Hydrothermal Carbon Materials for Uranium Removal from Aqueous Solution. RSC Adv. 2016, 6(104), 102462–102471. DOI: 10.1039/C6RA21986A.
  • Vukovic, S.; Watson, L. A.; Kang, S. O.; Custelcean, R.; Hay, B. P. How Amidoximate Binds the Uranyl Cation. Inorg. Chem. 2012, 51(6), 3855–3859. DOI: 10.1021/ic300062s.
  • Wang, C. Z.; Lan, J. H.; Wu, Q. Y.; Luo, Q.; Zhao, Y. L.; Wang, X. K.; Chai, Z. F.; Shi, W. Q. Theoretical Insights on the Interaction of Uranium with Amidoxime and Carboxyl Groups. Inorg. Chem. 2014, 53(18), 9466–9476. DOI: 10.1021/ic500202g.
  • Zhao, Y.; Li, J.; Zhao, L.; Zhang, S.; Huang, Y.; Wu, X.; Wang, X. Synthesis of Amidoxime-functionalized Fe3O4@SiO2 Core-shell Magnetic Microspheres for Highly Efficient Sorption of U(VI). Chem. Eng. J. 2014, 235, 275–283. DOI: 10.1016/j.cej.2013.09.034.
  • Zolfaghari, G.; Esmaili-Sari, A.; Anbia, M.; Younesi, H.; Ghasemian, M. B. A Zinc Oxide-coated Nanoporous Carbon Adsorbent for Lead Removal from Water: Optimization, Equilibrium Modeling, and Kinetics Studies. Int. J. Environ. Sci. Technol. 2013, 10(2), 325–340. DOI: 10.1007/s13762-012-0135-6.
  • Ibupoto, A. S.; Qureshi, U. A.; Arain, M.; Ahmed, F.; Khatri, Z.; Brohi, R. Z.; Kim, I. S.; Ibupoto, Z. Zno/carbon Nanofibers for Efficient Adsorption of Lead from Aqueous Solutions. Environ. Technol. [Online early access]. Published Online: 18 Feb, 2019. DOI: 10.1080/09593330.2019.1580774.
  • Kaynar, Ü. H.; Ayvacikli, M.; Hiçsönmez, Ü.; Çam, K. S. Removal of Thorium (IV) Ions from Aqueous Solution by a Novel Nanoporous ZnO: Isotherms, Kknetic and Thermodynamic Studies. J. Environ. Radioact. 2015, 150, 145–151. DOI: 10.1016/j.jenvrad.2015.08.014.
  • Naghizadeh, A.;. Comparison between Activated Carbon and Multiwall Carbon Nanotubes in the Removal of Cadmium (II) and Chromium (VI) from Water Solutions. J. Water Supply Res. Technol. 2015, 64(1), 64–73. DOI: 10.2166/aqua.2014.022.
  • Yavari, R.; Asadollahi, N.; Abbas, M. M. Preparation, Characterization and Evaluation of a Hybrid Material Based on Multiwall Carbon Nanotubes and Titanium Dioxide for the Removal of Thorium from Aqueous Solution. Prog. Nucl. Energy. 2017, 100, 183–191. DOI: 10.1016/j.pnucene.2017.06.009.
  • Chen, S.; Hong, J.; Yang, H.; Yang, J. Adsorption of Uranium (VI) from Aqueous Solution Using a Novel Graphene Oxide-activated Carbon Felt Composite. J. Environ. Radioact. 2013, 126, 253–258. DOI: 10.1016/j.jenvrad.2013.09.002.
  • Zhao, X.; Jia, Q.; Song, N.; Zhou, W.; Li, Y. Adsorption of Pb (II) from an Aqueous Solution by Titanium Dioxide/carbon Nanotube Nanocomposites: Kinetics, Thermodynamics and Isotherms. J. Chem. Eng. Data. 2010, 55(10), 4428–4433. DOI: 10.1021/je100586r.
  • Warner, J. H.; Schäffel, F.; Bachmatiuk, A.; Rümmeli, M. H. Practical Productions of Graphene, Supply and Cost. In Applications of Graphene; Wolf, E. L., Ed.; Springer: New York, London, 2014; pp 19–38.
  • Tran, T.; Leu, H.; Chiu, K.; Lin, C. Electrochemical Treatment for Wastewater Contained Heavy Metal the Removing of the COD and Heavy Metal Ions. J. Chin. Chem. Soc. 2017, 64(5), 96–101. DOI: 10.1002/jccs.201600266.
  • Zheng, T.; Wang, J.; Wang, Q.; Meng, H.; Wang, L. Research Trends in Electrochemical Technology for Water and Wastewater Treatment. Appl. Water Sci. 2017, 7(1), 13–30. DOI: 10.1007/s13201-015-0280-4.
  • Bejjany, B.; Lekhlif, B.; Eddaqaq, F.; Dani, A.; Mellouk, H.; Digua, K. Treatment of the Surface Water by Electrocoagulation-electroflotation Process in Internal Loop Airlift Reactor: Conductivity Effect on Turbidity Removal and Energy Consumption. J. Mater. Environ. Sci. 2017, 8, 2757–2768.
  • Nath, B.; Swaroopa, L. Y. V.; Tiwari, S. K.; Setty, D. S.; Kalyanakrishnan, G.; Saibaba, N. Study on Thorium Removal from Effluent by Electrocoagulation. In International Thorium Energy Conference (ThEC15), Mumbai, India, Oct 12–15, 2015.
  • Ridantami, V.; Wasito, B.; Prayitno. Pengaruh Tegangan Dan Waktu Pada Pengolahan Limbah Radioaktif Uranium Dan Torium Dengan Proses Elektrokoagulasi. J. Forum Nuklearmed. 2016, 12, 102–107.
  • Pasa, A. A.; Munford, M. L. Electrodeposition. In Encyclopedia of Chemical Processing;; Lee, S., Ed.; Taylor & Francis: Boca Raton, Florida, United States, 2006; pp 821–832.
  • Stoll, W.;. Thorium and Thorium Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley, V. C. H., Ed.; John Wiley & Sons: Indianapolis, IN, United States, 2003; Vol. 36, pp 689.
  • Lee, H. Y.; Jung, C. H.; Oh, W. Z.; Park, J. H.; Shul, Y. G. Electrosorption of Uranium Ions in Liquid Waste. Carbon Sci. 2003, 4(2), 64–68.
  • Xu, Y.; Zondlo, J. W.; Finklea, H. O.; Brennsteiner, A. Electrosorption of Uranium on Carbon Fibers as a Means of Environmental Remediation. Fuel Process. Technol. 2000, 68(3), 189–208. DOI: 10.1016/S0378-3820(00)00114-4.
  • Liang, C.; Dai, S. Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-bonding Interaction. J. Am. Chem. Soc. 2006, 128(16), 5316–5317. DOI: 10.1021/ja060242k.
  • Sweetman, M.; May, S.; Mebberson, N.; Pendleton, P.; Vasilev, K.; Plush, S.; Hayball, J. Activated Carbon, Carbon Nanotubes and Graphene: Materials and Composites for Advanced Water Purification. J. Carbon Res. 2017, 3(18), 1–29. DOI: 10.3390/c3020018.
  • Peng, L.; Chen, Y.; Dong, H.; Zeng, Q.; Song, H.; Chai, L.; Gu, J. D. Removal of Trace as (V) from Water with the Titanium Dioxide/acf Composite Electrode. Water. Air. Soil Pollut. 2015, 226. DOI: 10.1007/s11270-015-2463-x.
  • Zou, L.;. Developing Nano-structured Carbon Electrodes for Capacitive Brackish Water Desalination. In Expanding Issues in Desalination; Robert, Y. N., Ed.; InTech: Rijeka, Croatia, 2011; pp 301–318.
  • Ismail, A. F.; Yim, M. S. Investigation of Activated Carbon Adsorbent Electrode for Electrosorption-based Uranium Extraction from Seawater. Nucl. Eng. Technol. 2015, 47(5), 579–587. DOI: 10.1016/j.net.2015.02.002.
  • Jung, C. H.; Lee, H. Y.; Moon, J. K.; Won, H. J.; Shul, Y. G. Electrosorption of Uranium Ions on Activated Carbon Fibers. J. Radioanal. Nucl. Chem. 2011, 287(3), 833–839. DOI: 10.1007/s10967-010-0848-2.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92(3), 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Sudilovskiy, P. S.; Kagramanov, G. G.; Kolesnikov, V. A. Use of RO and NF for Treatment of Copper Containing Wastewaters in Combination with Flotation. Desalination. 2008, 221(1–3), 192–201. DOI: 10.1016/j.desal.2007.01.076.
  • Shon, H. K.; Phuntsho, S.; Chaudhary, D. S.; Vigneswaran, S.; Cho, J. Nanofiltration for Water and Wastewater Treatment – A Mini Review. Drink. Water Eng. Sci. 2013, 6, 47–53. DOI: 10.5194/dwes-6-47-2013.
  • Rana, D.; Matsuura, T.; Kassim, M. A.; Ismail, A. F. Radioactive Decontamination of Water by Membrane Processes - A Review. Desalination. 2013, 321, 77–92. DOI: 10.1016/j.desal.2012.11.007.
  • Ilaiyaraja, P.; Deb, A. K. S.; Ponraju, D. Removal of Uranium and Thorium from Aqueous Solution by Ultrafiltration (UF) and PAMAM Dendrimer Assisted Ultrafiltration (DAUF). J. Radioanal. Nucl. Chem. 2015, 303(1), 441–450. DOI: 10.1007/s10967-014-3462-x.
  • Bisset, W.; Jacobs, H.; Koshti, N.; Stark, P.; Gopalan, A. Synthesis and Metal Ion Complexation Properties of a Novel Polyethyleneimine N-methylhydroxamic Acid Water Soluble Polymer. React. Funct. Polym. 2003, 55(2), 109–119. DOI: 10.1016/S1381-5148(02)00199-2.
  • Saied, S. H. D.; Noshin, S.; Saeed, N.; Reza, A.; Sozan, M. Electromembrane Extraction of Heavy Metal Cations from Aqueous Media Based on Flat Membrane: Method Transfer from Hollow Fiber to Flat Membrane. Anal. Methods. 2015, 7(6), 2680–2686. DOI: 10.1039/c5ay00243e.
  • Pedersen-Bjergaard, S.; Huang, C.; Gjelstad, A. Electromembrane Extraction–Recent Trends and Where to Go. J. Pharm. Anal. 2017, 7(3), 141–147. DOI: 10.1016/j.jpha.2017.04.002.
  • Khajeh, M.; Pedersen-Bjergaard, S.; Barkhordar, A.; Bohlooli, M. Application of Hollow Cylindrical Wheat Stem for Electromembrane Extraction of Thorium in Water Samples. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2015, 137, 328–332. DOI: 10.1016/j.saa.2014.08.103.
  • Kim, J.; Tsouris, C.; Oyola, Y.; Janke, C. J.; Mayes, R. T.; Dai, S.; Gill, G.; Kuo, L.; Wood, J.; Choe, K.;; et al. Uptake of Uranium from Seawater by Amidoxime-based Polymeric Adsorbent : Field Experiments, Modeling and Updated Economic Assessment. Ind. Eng. Chem. Res. 2014, 53(14), 6076–6083.
  • Mohd Salehuddin, A. H. J.; Ismail, A. F.; Che Zainul Bahri, C. N. A.; Aziman, E. S. Economic Analysis of Thorium Extraction from Monazite. Nucl. Eng. Technol. 2019, 51(2), 631–640. DOI: 10.1016/j.net.2018.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.