387
Views
2
CrossRef citations to date
0
Altmetric
Review

Extraction and Purification Processes of Sinapic Acid Derivatives from Rapeseed and Mustard Seed By-Products

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 521-544 | Received 10 Nov 2020, Accepted 01 Nov 2021, Published online: 09 Dec 2021

REFERENCES

  • Nićiforović, N.; Abramovič, H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13(1), 34–51. DOI: 10.1111/1541-4337.12041.
  • Jat, R. S.; Singh, V. V.; Sharma, P.; Rai, P. K. Oilseed Brassica in India: Demand, Supply, Policy Perspective and Future Potential. OCL. 2019, 268. DOI: 10.1051/ocl/2019005.
  • FAOSTAT. Mustard seed production http://www.fao.org/faostat/en/#data/QC/visualize (accessed Mar 29, 2021).
  • Moore, A. Fertilizer Potential of Biofuel Byproducts. In Biofuel Production-Recent Developments and Prospects; Dos Santos Bernardes, M. A., Ed.; InTech, 2011. DOI: 10.5772/16394.
  • Banks, C. Renewable Energy from Crops and Agrowastes. SES6-CT-2004–502824. University of Southampton: UK, 2007.
  • Szydłowska-czerniak, A. Rapeseed and Its Products—Sources of Bioactive Compounds: A Review of Their Characteristics and Analysis. Crit. Rev. Food Sci. Nutr. 2013, 53(4), 307–330. DOI: 10.1080/10408398.2010.529959.
  • Shahidi, F.; Naczk, M.; Topps, H.; Jensen, S. K.; Olsen, H. S.; Sorensen, H.; Downey, R. K.; Bell, J. M.; Kott, L. S.; Erickson, L. R., et al. Canola and Rapeseed. Production, Chemistry, Nutrition and Processing Technology. New York: Springer Science+Business Media, LLC, 1990.
  • Favela‐González, K. M.; Hernández‐Almanza, A. Y.; La Fuente‐salcido, N. M. D. The Value of Bioactive Compounds of Cruciferous Vegetables (Brassica) as Antimicrobials and Antioxidants: A Review. J. Food Biochem. 2020, 44(10), e13414. DOI: 10.1111/jfbc.13414.
  • Arshadi, M.; Attard, T. M.; Lukasik, R. M.; Brncic, M.; Da Costa Lopes, A. M.; Finell, M.; Geladi, P.; Gerschenson, L. N.; Gogus, F.; Herrero, M., et al. Pre-Treatment and Extraction Techniques for Recovery of Added Value Compounds from Wastes throughout the Agri-Food Chain. Green Chem. 2016, 18(23), 6160–6204. DOI: 10.1039/C6GC01389A.
  • Galanakis, C. M.;, Ed. Food Waste Recovery; Academic press Cambridge, Elsevier, 2021. DOI:10.1016/C2019-0-01446-X.
  • Mailer, R. J.; McFadden, A.; Ayton, J.; Redden, B. A Nutritional Components, Fibre, Sinapine and Glucosinolate Content, in Australian Canola (Brassica Napus L.) Meal. J. Am. Oil Chem. Soc. 2008, 85(10), 937–944. DOI: 10.1007/s11746-008-1268-0.
  • Baker, L. A.; Horbury, M. D.; Greenough, S. E.; Allais, F.; Walsh, P. S.; Habershon, S.; Stavros, V. G. Ultrafast Photoprotecting Sunscreens in Natural Plants. J. Phys. Chem. Lett. 2016, 7(1), 56–61. DOI: 10.1021/acs.jpclett.5b02474.
  • Dean, J. C.; Kusaka, R.; Walsh, P. S.; Allais, F.; Zwier, T. S. Plant Sunscreens in the UV-B: Ultraviolet Spectroscopy of Jet-Cooled Sinapoyl Malate, Sinapic Acid, and Sinapate Ester Derivatives. J. Am. Chem. Soc. 2014, 136(42), 14780–14795. DOI: 10.1021/ja5059026.
  • Peyrot, C.; Mention, M. M.; Fournier, R.; Brunissen, F.; Couvreur, J.; Balaguer, P.; Allais, F. Expeditious and sustainable two-step synthesis of Sinapoyl-L-Malate sinapoyl-l-malate and analogues: Towards Nonendocrine non-endocrine disruptive bio-based and water-soluble bioactive compounds. Green Chem. 2020, 22(19), 6510–6518. DOI: 10.1039/D0GC02763D.
  • Rioux, B.; Peyrot, C.; Mention, M. M.; Brunissen, F.; Allais, F. Sustainable Synthesis of P-Hydroxycinnamic Diacids through Proline-Mediated Knoevenagel Condensation in Ethanol: An Access to Potent Phenolic UV Filters and Radical Scavengers. Antioxidants. 2020, 9(4), 331. DOI: 10.3390/antiox9040331.
  • Jaufurally, A. S.; Teixeira, A. R. S.; Hollande, L.; Allais, F.; Ducrot, P.-H. Optimization of the Laccase-Catalyzed Synthesis of (±)-Syringaresinol and Study of Its Thermal and Antiradical Activities. ChemistrySelect. 2016, 1(16), 5165–5171. DOI: 10.1002/slct.201600543.
  • Janvier, M.; Hollande, L.; Jaufurally, A. S.; Pernes, M.; Ménard, R.; Grimaldi, M.; Beaugrand, J.; Balaguer, P.; Ducrot, P.-H.; Allais, F. Syringaresinol: A Renewable and Safer Alternative to Bisphenol A for Epoxy-Amine Resins. ChemSusChem. 2017, 10(4), 738–746. DOI: 10.1002/cssc.201601595.
  • Xia, X.; Xiang, X.; Huang, F.; Zheng, M.; Zhang, Z.; Han, L. Dietary Canolol Induces Apoptosis in Human Cervical Carcinoma HeLa Cells through ROS-MAPK Mediated Mitochondrial Signaling Pathway: In Vitro and in Vivo. Chem.-Biol. Interact. 2019, 300, 138–150. DOI: 10.1016/j.cbi.2019.01.016.
  • Khattab, R. Y.; Eskin, M. N. A.; Thiyam-Hollander, U. Production of Canolol from Canola Meal Phenolics via Hydrolysis and Microwave-Induced Decarboxylation. J. Am. Oil Chem. Soc. 2014, 91(1), 89–97. DOI: 10.1007/s11746-013-2345-6.
  • Diot-Néant, F.; Migeot, L.; Hollande, L.; Reano, F. A.; Domenek, S.; Allais, F. Biocatalytic Synthesis and Polymerization via ROMP of New Biobased Phenolic Monomers: A Greener Process toward Sustainable Antioxidant Polymers. Front. Chem. 2017, 5126. DOI: 10.3389/fchem.2017.00126.
  • Mouterde, L. M. M.; Allais, F. Microwave-Assisted Knoevenagel-Doebner Reaction: An Efficient Method for Naturally Occurring Phenolic Acids Synthesis. Front. Chem. 2018, 6. DOI: 10.3389/fchem.2018.00426.
  • Peyrot, C.; Peru, A. A. M.; Mouterde, L. M. M.; Allais, F. Proline-Mediated Knoevenagel−Doebner Condensation in Ethanol: A Sustainable Access to P‑Hydroxycinnamic Acids. ACS Sustainable Chem. Eng. 2019, 7(10), 9422–9427. DOI: 10.1021/acssuschemeng.9b00624.
  • van Schijndel, J.; Canalle, L. A.; Smid, J.; Meuldijk, J. Conversion of Syringaldehyde to Sinapinic Acid through Knoevenagel-Doebner Condensation. Open J. Phys. Chem. 2016, 06(4), 101–108. DOI: 10.4236/ojpc.2016.64010.
  • Flourat, A. L.; Combes, J.; Bailly-Maitre-Grand, C.; Magnien, K.; Haudrechy, A.; Renault, J.-H.; Allais, F. Accessing P‐Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery or Engineered Microbial Production? ChemSusChem. 2020. DOI: 10.1002/cssc.202002141.
  • Odinot, E.; Fine, F.; Sigoillot, J.-C.; Navarro, D.; Laguna, O.; Bisotto, A.; Peyronnet, C.; Ginies, C.; Lecomte, J.; Faulds, C., et al. A Two-Step Bioconversion Process for Canolol Production from Rapeseed Meal Combining an Aspergillus Niger Feruloyl Esterase and the Fungus Neolentinus Lepideus. Microorganisms 2017, 5(4), 67. DOI: 10.3390/microorganisms5040067.
  • Thiel, A.; Muffler, K.; Tippkötter, N.; Suck, K.; Sohling, U.; Hruschka, S. M.; Ulber, R. A Novel Integrated Downstream Processing Approach to Recover Sinapic Acid, Phytic Acid and Proteins from Rapeseed Meal: A Novel Downstream Processing Approach for Rapeseed Meal. J. Chem. Technol. Biotechnol. 2015, 90(11), 1999–2006. DOI: 10.1002/jctb.4664.
  • Gadamer, J. Über die Bestandteile des schwarzen und des weissen Senfsamens. Arch. Pharm. Pharm. Med. Chem. 1897, 235(1–3), 44–114. DOI: 10.1002/ardp.18972350106.
  • Cai, R.; Arntfield, S. D.; Charlton, J. L. Structural Changes of Sinapic Acid during Alkali-Induced Air Oxidation and the Development of Colored Substances. J. Amer. Oil Chem. Soc. 1999, 76(6), 757–764. DOI: 10.1007/s11746-999-0172-6.
  • Cai, R.; Arntfield, S. D.; Charlton, J. L. Structural Changes of Sinapic Acid and Sinapine Bisulfate during Autoclaving with Respect to the Development of Colored Substances. J. Amer. Oil Chem. Soc. 1999, 76(4), 433–441. DOI: 10.1007/s11746-999-0021-7.
  • Chadni, M.; Flourat, A. L.; Reungoat, V.; Mouterde, L. M. M.; Allais, F.; Ioannou, I. Selective Extraction of Sinapic Acid Derivatives from Mustard Seed Meal by Acting on PH: Toward a High Antioxidant Activity Rich Extract. Molecules. 2021, 26(1), 212. DOI: 10.3390/molecules26010212.
  • Thiyam-Holländer, U.; Aladedunye, F.; Logan, A.; Yang, H.; Diehl, B. W. K. Identification and Quantification of Canolol and Related Sinapate Precursors in Indian Mustard Oils and Canadian Mustard Products: Identification of Canolol, Sinapine and Sinapic Acid in Mustard. Europ. J. Lipid Sci. Technol. 2014, 116(12), 1664–1674. DOI: 10.1002/ejlt.201400222.
  • Naczk, M.; Amarowicz, R.; Sullivan, A.; Shahidi, F. Current Research Developments on Polyphenolics of Rapeseed/Canola: A Review. Food Chem. 1998, 62(4), 489–502. DOI: 10.1016/S0308-8146(97)00198-2.
  • Reungoat, V.; Gaudin, M.; Flourat, A. L.; Isidore, E.; Mouterde, L. M. M.; Allais, F.; Ducatel, H.; Ioannou, I. Optimization of an Ethanol/Water-Based Sinapine Extraction from Mustard Bran Using Response Surface Methodology. Food Bioprod. Process. 2020, 122, 322–331. DOI: 10.1016/j.fbp.2020.06.001.
  • Fahmi, R. (2016). Antioxidant and Antibacterial Properties of Endogenous Phenolic Compounds from Commercial Mustard Products. PhD thesis, University of Manitoba: Manitoba.
  • Zago, E.; (2015) Extraction et transformation chimio-enzymatique de composés phénoliques issus de graines oleagineuses, PhD thesis, Montpellier University.
  • Nguyen, V. P. T.; Stewart, J. D.; Ioannou, I.; Allais, F. Sinapic acid and sinapate esters in brassica: Innate accumulation, biosynthesis, accessibility via chemical synthesis or recovery from biomass, and biological activities. Front. Chem. 2021, 9664602. DOI: 10.3389/fchem.2021.664602.
  • Gupta, S. K. Chapter 3 - Brassicas.In Breeding Oilseed Crops for Sustainable Production - Opportunities and Constraints. Surinder Kumar Gupta,ed.; Academic press: USA, 2016; pp 33–53.
  • Mustard 21 Canada Inc. #1 An Ancient Spice that Packs a Punch https://www.mustard21.com/fact-sheets/an-ancient-spice/ (accessed July 12, 2021).
  • Katepa-Mupondwa, F.; Gugel, R. K.; Raney, J. P. Genetic Diversity for Agronomic, Morphological and Seed Quality Traits in Sinapis Alba L. (Yellow Mustard). Canad. J. Plant Sci. 2006, 86(4), 1015–1025. DOI: 10.4141/P05-185.
  • Feedipedia. Rapeseeds. https://www.feedipedia.org/node/15617 (accessed Apr 25, 2020).
  • Canola council of Canada. What is canola? https://www.canolacouncil.org/oil-and-meal/what-is-canola/ (accessed March 10, 2021).
  • Konur, O. Rapeseed Oil-Based Biodiesel Fuels: A Review of the Research. In Biodiesel Fuels Based on Edible and Nonedible Feedstocks, Wastes, and Algae; Ozcan Konur,ed.; CRC Press Oxon , 2021; pp 497–516.
  • Sehwag, S.; Das, M. A Brief Overview: Present Status on Utilization of Mustard Oil and Cake. Ind. J. Tradit. Knowl. 2015, 14(2), 244–250. http://nopr.niscair.res.in/handle/123456789/32079.
  • Bell, J. M. Nutrients and Toxicants in Rapeseed Meal: A Review. J. Animal Sci. 1984, 58(4), 996–1010. DOI: 10.2527/jas1984.584996x.
  • The Editors of Encyclopaedia Britannica. Mustard https://www.britannica.com/plant/mustard (accessed Jun 3, 2021).
  • Mayengbam, S.; Aachary, A.; Thiyam-Holländer, U. Endogenous Phenolics in Hulls and Cotyledons of Mustard and Canola: A Comparative Study on Its Sinapates and Antioxidant Capacity. Antioxidants. 2014, 3(3), 544–558. DOI: 10.3390/antiox3030544.
  • Cong, Y.; Zheng, M.; Huang, F.; Liu, C.; Zheng, C. Sinapic Acid Derivatives in Microwave-Pretreated Rapeseeds and Minor Components in Oils. J. Food Composit. Anal. 2020, 87, 103394. DOI: 10.1016/j.jfca.2019.103394.
  • Dubie, J.; Stancik, A.; Morra, M.; Nindo, C. Antioxidant extraction from mustard (Brassica Juncea) seed meal using high-intensity ultrasound: Antioxidant extraction from mustard (Brassica Juncea) seed meal. J. Food Sci. 2013, 78(4), E542–E548. DOI: 10.1111/1750-3841.12085.
  • Nandasiri, R.; Eskin, N. A. M.; Thiyam‐Höllander, U. Antioxidative polyphenols of canola meal extracted by high pressure: Impact of temperature and solvents. J. Food Sci. 2019, 84(11), 3117–3128. DOI: 10.1111/1750-3841.14799.
  • Laguna, O.; Barakat, A.; Alhamada, H.; Durand, E.; Baréa, B.; Fine, F.; Villeneuve, P.; Citeau, M.; Dauguet, S.; Lecomte, J. Production of Proteins and Phenolic Compounds Enriched Fractions from Rapeseed and Sunflower Meals by Dry Fractionation Processes. Ind. Crops Prod. 2018, 118, 160–172. DOI: 10.1016/j.indcrop.2018.03.045.
  • Yang, M.; Zheng, C.; Zhou, Q.; Liu, C.; Li, W.; Huang, F. Influence of Microwaves Treatment of Rapeseed on Phenolic Compounds and Canolol Content. J. Agric. Food Chem. 2014, 62(8), 1956–1963. DOI: 10.1021/jf4054287.
  • Achinivu, E. C.; Flourat, A. L.; Brunissen, F.; Allais, F. Valorization of waste biomass from oleaginous “oil-bearing” seeds through the biocatalytic production of sinapic acid from mustard bran. Biomass Bioenergy. 2021, 145, 105940. DOI: 10.1016/j.biombioe.2020.105940.
  • Mizani, M.; Yousefi, M.; Rasouli, S.; Sharifan, A.; Moghaddam, M. B. The effect of different deheating processes on residual myrosinase activity, antimicrobial properties and total phenolic contents of yellow mustard (Sinapis Alba) Journal of Food Biosciences and Technology . 2016, 6(2), 12.
  • Khattab, R.; Eskin, M.; Aliani, M.; Thiyam, U. Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. J. Am. Oil Chem. Soc. 2010, 87(2), 147–155. DOI: 10.1007/s11746-009-1486-0.
  • Nicácio, A. E.; Rodrigues, C. A.; Visentainer, J. V.; Maldaner, L. Evaluation of the QuEChERS Method for the Determination of Phenolic Compounds in Yellow (Brassica Alba), Brown (Brassica Juncea), and Black (Brassica Nigra) Mustard Seeds. Food Chem. 2021, 340, 128162. DOI: 10.1016/j.foodchem.2020.128162.
  • Arena, K.; Cacciola, F.; Dugo, L.; Dugo, P.; Mondello, L. Determination of the metabolite content of brassica juncea cultivars using comprehensive two-dimensional liquid chromatography coupled with a photodiode array and mass spectrometry detection. Molecules. 2020, 25(5), 1235. DOI: 10.3390/molecules25051235.
  • Engels, C.; Schieber, A.; Gänzle, M. G. Sinapic Acid Derivatives in Defatted Oriental Mustard (Brassica Juncea L.) Seed Meal Extracts Using UHPLC-DAD-ESI-MS n and Identification of Compounds with Antibacterial Activity. Eur. Food Res. Technol. 2012, 234(3), 535–542. DOI: 10.1007/s00217-012-1669-z.
  • Kozlowska, H.; Rotkiewicz, D. A.; Zadernowski, R.; Sosulski, F. W. Phenolic Acids in Rapeseed and Mustard. J. Am. Oil Chem. Soc. 1983, 60(6), 1119–1123. DOI: 10.1007/BF02671339.
  • Lin, L.-Z.; Harnly, J. M. Phenolic Component Profiles of Mustard Greens, Yu Choy, and 15 Other Brassica Vegetables. J. Agric. Food Chem. 2010, 58(11), 6850–6857. DOI: 10.1021/jf1004786.
  • Cartea, M. E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules. 2010, 16(1), 251–280. DOI: 10.3390/molecules16010251.
  • Qu, C.; Yin, N.; Chen, S.; Wang, S.; Chen, X.; Zhao, H.; Shen, S.; Fu, F.; Zhou, B.; Xu, X., et al. Comparative analysis of the metabolic profiles of yellow- versus black-seeded rapeseed using UPLC–HESI–MS/MS and transcriptome analysis. J. Agric. Food Chem. 2020, 68(10), 3033–3049. DOI: 10.1021/acs.jafc.9b07173.
  • Khattab, R.; Goldberg, E.; Lin, L.; Thiyam, U. Quantitative analysis and free-radical-scavenging activity of chlorophyll, phytic acid, and condensed tannins in Canola. Food Chem. 2010, 122(4), 1266–1272. DOI: 10.1016/j.foodchem.2010.03.081.
  • Zardo, I.; Rodrigues, N. P.; Sarkis, J. R.; Marczak, L. D. Extraction and identification by mass spectrometry of phenolic compounds from canola seed cake. J. Sci. Food Agric. 2020, 100(2), 578–586. DOI: 10.1002/jsfa.10051.
  • Bouchereau, A.; Hamelin, J.; Lamour, I.; Renard, M.; Larher, F. Distribution of sinapine and related compounds in seeds of brassica and allied genera. Phytochemistry. 1991, 30(6), 1873–1881. DOI: 10.1016/0031-9422(91)85031-T.
  • Szydłowska-Czerniak, A.; Tułodziecka, A. Application of response surface methodology to optimize ultrasound-assisted extraction of total antioxidants from Brassica Napus Cultivars: Ultrasound effect on antioxidants extraction from rapeseed. Europ. J. Lipid Sci. Technol. 2015, 117(4), 491–502. DOI: 10.1002/ejlt.201400310.
  • Thangi, J.; Shashitha, O. N. A correlation study of antioxidant potentials from synapis Alba Indo Am. J. Pharm. Sci. 2016, 3(3), 6.
  • Matthäus, B. Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Lipid/Fett. 1998, 100(7), 295–301. DOI: 10.1002/(SICI)1521-4133(199807)100:7<295::AID-LIPI295>3.0.CO;2-G.
  • Liu, Q.; Wu, L.; Pu, H.; Li, C.; Hu, Q. Profile and distribution of soluble and insoluble phenolics in chinese rapeseed (Brassica Napus). Food Chem. 2012, 135(2), 616–622. DOI: 10.1016/j.foodchem.2012.04.142.
  • Mueller, M. M.; Ryl, E. B.; Fenton, T.; Clandinin, D. R. Cultivar and growing location differences on the sinapine content of rapeseed. Canad. J. Animal Sci. 1978, 58(4), 579–583. DOI: 10.4141/cjas78-076.
  • Dabrowski, K. J.; Sosulski, F. W. Composition of free and hydrolyzable phenolic acids in defatted flours of ten oilseeds. J. Agric. Food Chem. 1984, 32(1), 128–130. DOI: 10.1021/jf00121a032.
  • Naczk, M.; Wanasundara, P. K. J. P. D.; Shahidi, F. Facile spectrophotometric quantification method of sinapic acid in hexane-extracted and methanol-ammonia-water-treated mustard and rapeseed meals. J. Agric. Food Chem. 1992, 40(3), 444–448. DOI: 10.1021/jf00015a016.
  • Devis, N.; Devis, W. Nutrient analysis of some poultry feedstuffs locally available in Manipur, India. World J. Dairy Food Sci. 2011, 6(2), 136–139.
  • Yuan, L.; Scanlon, M. G.; Eskin, N. A. M.; Thiyam-Hollander, U.; Aachary, A. Effect of pretreatments and endo-1,4-β-xylanase hydrolysis of Canola meal and mustard bran for production of oligosaccharides. Appl Biochem Biotechnol,2014, 175, 194–208. DOI:10.1007/s12010-014-1253-z.
  • Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem. 2016, 213, 450–456. DOI: 10.1016/j.foodchem.2016.06.102.
  • Hebert, M.; Mhemdi, H.; Vorobiev, E. Selective and eco-friendly recovery of glucosinolates from mustard seeds (Brassica Juncea) using process optimization and innovative pretreatment (high voltage electrical discharges). Food Bioprod. Process. 2020, 124, 11–23. DOI: 10.1016/j.fbp.2020.04.009.
  • Carré, P.; Citeau, M.; Robin, G.; Estorges, M. Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica Napus). OCL. 2016, 23(3), A302. DOI: 10.1051/ocl/2016013.
  • Marles, M. S.; Gruber, M. Y. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the brassicaceae. J. Sci. Food Agric. 2004, 84(3), 251–262. DOI: 10.1002/jsfa.1621.
  • Galanakis, C. M.; Goulas, V.; Tsakona, S.; Manganaris, G. A.; Gekas, V. A knowledge base for the recovery of natural phenols with different solvents. Int. J. Food Prop. 2013, 16(2), 382–396. DOI: 10.1080/10942912.2010.522750.
  • Granato, D.; Santos, J. S.; Maciel, L. G.; Nunes, D. S. Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices. TrAC Trends Anal. Chem. 2016, 80, 266–279. DOI: 10.1016/j.trac.2016.03.010.
  • Das Purkayastha, M.; Das, S.; Manhar, A. K.; Deka, D.; Mandal, M.; Mahanta, C. L. Removing antinutrients from rapeseed press-cake and their benevolent role in waste cooking oil-derived biodiesel: Conjoining the valorization of two disparate industrial wastes. J. Agric. Food Chem. 2013, 61(45), 10746–10756. DOI: 10.1021/jf403657c.
  • Rasera, G. B.; Hilkner, M. H.; de Alencar, S. M.; de Castro, R. J. S. Biologically active compounds from white and black mustard grains: an optimization study for recovery and identification of phenolic antioxidants. Ind. Crops Prod. 2019, 135, 294–300. DOI: 10.1016/j.indcrop.2019.04.059.
  • Obied, H. K.; Song, Y.; Foley, S.; Loughlin, M.; Rehman, A.; Mailer, R.; Masud, T.; Agboola, S. Biophenols and antioxidant properties of australian canola meal. J. Agric. Food Chem. 2013, 61(38), 9176–9184. DOI: 10.1021/jf4026585.
  • Chandrasekara, A.; Rasek, O. A.; John, J. A.; Chandrasekara, N.; Shahidi, F. Solvent and Extraction Conditions Control the Assayable Phenolic Content and Antioxidant Activities of Seeds of Black Beans, Canola and Millet. J. Am. Oil Chem. Soc. 2016, 93(2), 275–283. DOI: 10.1007/s11746-015-2760-y.
  • Huang, S.; Huang, M.; Feng, B. Antioxidant activity of extracts produced from pickled and dried mustard (Brassica Juncea Coss. Var. Foliosa Bailey). Int. J. Food Prop. 2012, 15(2), 374–384. DOI: 10.1080/10942912.2010.487628.
  • Flourat, A. L.; Willig, G.; Teixeira, A. R. S.; Allais, F. Eco-friendly extraction of sinapine from residues of mustard production. Front. Sust. Food Syst. 2019, 3. DOI: 10.3389/fsufs.2019.00012.
  • Kraling, K.; Robbelen, G.; Thies, W. Genetic Variation of the Content of Sinapoyl Esters in Seeds of Rape, B. Napus. Plant Breed. 1991, 106(3), 254–257. DOI: 10.1111/j.1439-0523.1991.tb00509.x.
  • Bhinu, V.-S.; Schäfer, U. A.; Li, R.; Huang, J.; Hannoufa, A. Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in brassica napus. Transgenic Res. 2009, 18(1), 31–44. DOI: 10.1007/s11248-008-9194-3.
  • Bopp, M.; Lüdicke, W. Synthesis of Sinapine during Seed Development of Sinapis Alba. Zeitschrift für Naturforschung C. 1980, 35(7–8), 539–543. DOI: 10.1515/znc-1980-7-803.
  • Kerber, E.; Buchloh, G. Sinapingehalte in Speisesenf. Z Lebensm Unters Forch. 1980, 171(5), 355–356. DOI: 10.1007/BF01087132.
  • Zago, E.; Lecomte, J.; Barouh, N.; Aouf, C.; Carré, P.; Fine, F.; Villeneuve, P. Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol. Ind. Crops Prod. 2015, 76, 1061–1070. DOI: 10.1016/j.indcrop.2015.08.022.
  • Blair, R.; Reichert, R. D. Carbohydrate and Phenolic Constituents in a Comprehensive Range of Rapeseed and Canola Fractions: Nutritional Significance for Animals. J. Sci. Food Agric. 1984, 35(1), 29–35. DOI: 10.1002/jsfa.2740350106.
  • Hassasroudsari, M.; Chang, P.; Pegg, R.; Tyler, R. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem. 2009, 114(2), 717–726. DOI: 10.1016/j.foodchem.2008.09.097.
  • Kozlowska, H.; Sabir, M. A.; Sosulski, F. W.; Coxworth, E. Phenolic constituents in rapeseed flour. Canad. Inst. Food Sci. Technol. J. 1975, 8(3), 160–163. DOI: 10.1016/S0315-5463(75)73769-0.
  • Laguna, O.; Odinot, E.; Bisotto, A.; Baréa, B.; Villeneuve, P.; Sigoillot, J.-C.; Record, E.; Faulds, C. B.; Fine, F.; Lesage-Meessen, L., et al. Release of phenolic acids from sunflower and rapeseed meals using different carboxylic esters hydrolases from aspergillus niger. Ind. Crops Prod. 2019, 139, 111579. DOI: 10.1016/j.indcrop.2019.111579.
  • Terpinc, P.; Čeh, B.; Ulrih, N. P.; Abramovič, H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crops Prod. 2012, 39, 210–217. DOI: 10.1016/j.indcrop.2012.02.023.
  • Xu, L.; Diosady, L. L. Removal of Phenolic Compounds in the Production of High-Quality Canola Protein Isolates. Food Res. Int. 2002, 35(1), 23–30. DOI: 10.1016/S0963-9969(00)00159-9.
  • Thiyam, U.; Kuhlmann, A.; Stöckmann, H.; Schwarz, K. Prospects of Rapeseed Oil By-Products with Respect to Antioxidative Potential. C. R. Chim. 2004, 7(6–7), 611–616. DOI: 10.1016/j.crci.2004.02.011.
  • Thiyam, U.; Stöckmann, H.; Zum Felde, T.; Schwarz, K. Antioxidative Effect of the Main Sinapic Acid Derivatives from Rapeseed and Mustard Oil By-Products. European J. Lipid Sci. Technol. 2006, 108(3), 239–248. DOI: 10.1002/ejlt.200500292.
  • Siger, A.; Czubinski, J.; Dwiecki, K.; Kachlicki, P.; Nogala-Kalucka, M. Identification and Antioxidant Activity of Sinapic Acid Derivatives in Brassica Napus L. Seed Meal Extracts: Main Phenolic Compounds in Rapeseed. Eur. J. Lipid Sci. Technol. 2013. DOI: 10.1002/ejlt.201300077.
  • Hernández-Jabalera, A.; Cortés-Giraldo, I.; Dávila-Ortíz, G.; Vioque, J.; Alaiz, M.; Girón-Calle, J.; Megías, C.; Jiménez-Martínez, C. Influence of Peptides–Phenolics Interaction on the Antioxidant Profile of Protein Hydrolysates from Brassica Napus. Food Chem. 2015, 178, 346–357. DOI: 10.1016/j.foodchem.2014.12.063.
  • Sinichi, S.; Siañez, A. V. L.; Diosady, L. L. Recovery of phenolic compounds from the by-products of yellow mustard protein isolation. Food Res. Int. 2019, 115, 460–466. DOI: 10.1016/j.foodres.2018.10.047.
  • Yates, K.; Pohl, F.; Busch, M.; Mozer, A.; Watters, L.; Shiryaev, A.; Kong Thoo Lin, P. Determination of Sinapine in Rapeseed Pomace Extract: Its Antioxidant and Acetylcholinesterase Inhibition Properties. Food Chem. 2019, 276, 768–775. DOI: 10.1016/j.foodchem.2018.10.045.
  • Lacki, K.; Duvnjak, Z. Comparison of Three Methods for the Determination of Sinapic Acid Ester Content in Enzymatically Treated Canola Meals. Appl. Microb. Biotech. 1996, 45(4), 530–537. DOI: 10.1007/BF00578467.
  • Yang, S.-C.; Arasu, M. V.; Chun, J.-H.; Jang, Y.-S.; Lee, Y.-H.; Kim, I. H.; Lee, K.-T.; Hong, S.-T.; Kim, S.-J. Identification and Determination of Phenolic Compounds in Rapeseed Meals (Brassica Napus L.). J. Agr. Chem. Env. 2015, 04(1), 14–23. DOI: 10.4236/jacen.2015.41002.
  • Wang, S. X.; Oomah, B. D.; McGregor, D. I. Application and Evaluation of Ion-Exchange UV Spectrophotometric Method for Determination of Sinapine in Brassica Seeds and Meals. J. Agric. Food Chem. 1998, 46(2), 575–579. DOI: 10.1021/jf9705577.
  • Teh, -S.-S.; Birch, E. J. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrason. Sonochem. 2014, 21(1), 346–353. DOI: 10.1016/j.ultsonch.2013.08.002.
  • Teh, -S.-S.; Niven, B. E.; Bekhit, A. E.-D. A.; Carne, A.; Birch, E. J. Microwave and pulsed electric field assisted extractions of polyphenols from defatted canola seed cake. Int. J. Food Sci. Technol. 2015, 50(5), 1109–1115. DOI: 10.1111/ijfs.12749.
  • Morley, K. L.; Grosse, S.; Leisch, H.; Lau, P. C. K. Antioxidant canolol production from a renewable feedstock via an engineered decarboxylase. Green Chem. 2013, 15(12), 3312. DOI: 10.1039/c3gc40748a.
  • Cai, R.; Arntfield, S. D. A rapid high-performance liquid chromatographic method for the determination of sinapine and sinapic acid in canola seed and meal. J. Am. Oil Chem. Soc. 2001, 78(9), 903–910. DOI: 10.1007/s11746-001-0362-4.
  • Das, R.; Bhattacherjee, C.; Ghosh, S. Preparation of mustard (Brassica Juncea L.) protein isolate and recovery of phenolic compounds by ultrafiltration. Ind. Eng. Chem. Res. 2009, 48(10), 4939–4947. DOI: 10.1021/ie801474q.
  • Alder, C. M.; Hayler, J. D.; Henderson, R. K.; Redman, A. M.; Shukla, L.; Shuster, L. E.; Sneddon, H. F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 2016, 18(13), 3879–3890. DOI: 10.1039/C6GC00611F.
  • Chemat, F.; Vian, M. A.; Cravotto, G. Green extraction of natural products: Concept and principles. IJMS. 2012, 13(7), 8615–8627. DOI: 10.3390/ijms13078615.
  • Torres-Valenzuela, L. S.; Ballesteros-Gómez, A.; Rubio, S. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng. Rev. 2020, 12(1), 83–100. DOI: 10.1007/s12393-019-09206-y.
  • Thiyam-Hollander, U.; Eskin, M. Method for production of canolol. WO2020124211A1, June 25, 2020.
  • Charlton, J. L.; Lee, K.-A. Thomasidioic acid and 6-Hydroxy-5,7-dimethoxy-2-naphthoic acid: Are they really natural products? Tetrahedron Lett. 1997, 38(42), 7311–7312. DOI: 10.1016/S0040-4039(97)01775-9.
  • Gomes, H. I.; Mayes, W. M.; Rogerson, M.; Stewart, D. I.; Burke, I. T. Alkaline residues and the environment: A review of impacts, management practices and opportunities. J. Cleaner Prod. 2016, 112, 3571–3582. DOI: 10.1016/j.jclepro.2015.09.111.
  • Arruda, H. S.; Pereira, G. A.; Pastore, G. M. Optimization of extraction parameters of total phenolics from annona crassiflora mart. (Araticum) fruits using response surface methodology. Food Anal. Methods. 2017, 10(1), 100–110. DOI: 10.1007/s12161-016-0554-y.
  • Reungoat, V.; Chadni, M.; Ioannou, I. Response Surface Methodology Applied to the Optimization of Phenolic Compound Extraction from Brassica. In Response Surface Methodology in Engineering Science; Palanikumar Kayaroganam, ed.; IntechOpen London, 2021; 1–19. DOI: 10.5772/intechopen.97655.
  • Esclapez, M. D.; García-Pérez, J. V.; Mulet, A.; Cárcel, J. A. Ultrasound-assisted extraction of natural products. Food Eng. Rev. 2011, 3(2), 108–120. DOI: 10.1007/s12393-011-9036-6.
  • Panda, D.; Manickam, S. Cavitation technology—the future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Appl. Sci. 2019, 9(4), 766. DOI: 10.3390/app9040766.
  • Matthäus, B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 2002, 50(12), 3444–3452. DOI: 10.1021/jf011440s.
  • Yu, X.; Gouyo, T.; Grimi, N.; Bals, O.; Vorobiev, E. Ultrasound Enhanced Aqueous Extraction from Rapeseed Green Biomass for Polyphenol and Protein Valorization. C. R. Chim. 2016, 19(6), 766–777. DOI: 10.1016/j.crci.2016.03.007.
  • Ding, Q.; Jiang, H.; Chen, Y.; Luo, L.; He, R.; Ma, H.; Wu‐Chen, R. A.; Zhang, T. Influence of nitrogen protection on the extraction yield and antioxidant activities of polyphenols by ultrasonic‐assisted extraction from rapeseed meal. J. Food Process Eng. 2019, 42(5). DOI: 10.1111/jfpe.13104.
  • Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T. J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8(2), 6. DOI:10.1016/S1350-4177(00)00033-X.
  • Chémat, F.; Cravotto, G., Eds. Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice. Food engineering series; Springer: New York, 2013.
  • Flórez, N.; Conde, E.; Domínguez, H. Microwave assisted water extraction of plant compounds: Microwave assisted water extraction of plant compounds. J. Chem. Technol. Biotechnol. 2015, 90(4), 590–607. DOI: 10.1002/jctb.4519.
  • Mayengbam, S.; Khattab, R.; Thiyam-Hollander, U. Effect of conventional and microwave toasting on sinapic acid derivatives and canolol content of canola. CNF. 2013, 9(4), 321–327. DOI: 10.2174/157340130904131122094946.
  • Niu, Y.; Jiang, M.; Wan, C.; Yang, M.; Hu, S. Effect of microwave treatment on sinapic acid derivatives in rapeseed and rapeseed meal. J. Am. Oil Chem. Soc. 2013, 90(2), 307–313. DOI: 10.1007/s11746-012-2167-y.
  • Spielmeyer, A.; Wagner, A.; Jahreis, G. Influence of Thermal Treatment of Rapeseed on the Canolol Content. Food Chem. 2009, 112(4), 944–948. DOI: 10.1016/j.foodchem.2008.07.011.
  • Liazid, A.; Palma, M.; Brigui, J.; Barroso, C. G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A. 2007, 1140(1–2), 29–34. DOI: 10.1016/j.chroma.2006.11.040.
  • Nandasiri, R.; Imran, A.; Thiyam-Holländer, U.; Eskin, N. A. M. Rapidoxy® 100: A solvent-free pre-treatment for production of canolol. Front. Nutr. 2021, 86, 87851. DOI: 10.3389/fnut.2021.687851.
  • Puértolas, E.; Koubaa, M.; Barba, F. J. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Res. Int. 2016, 80, 19–26. DOI: 10.1016/j.foodres.2015.12.009.
  • Barba, F. J.; Parniakov, O.; Pereira, S. A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J. A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D., et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Int. 2015, 77, 773–798. DOI: 10.1016/j.foodres.2015.09.015.
  • Yu, X.; Bals, O.; Grimi, N.; Vorobiev, E.; New, A. Way for the Oil Plant Biomass Valorization: Polyphenols and Proteins Extraction from Rapeseed Stems and Leaves Assisted by Pulsed Electric Fields. Ind. Crops Prod. 2015, 74, 309–318. DOI: 10.1016/j.indcrop.2015.03.045.
  • Barba, F. J.; Boussetta, N.; Vorobiev, E. Emerging Technologies for the Recovery of Isothiocyanates, Protein and Phenolic Compounds from Rapeseed and Rapeseed Press-Cake: Effect of High Voltage Electrical Discharges. Innovative Food Sci. Emerg. Technol. 2015, 31, 67–72. DOI: 10.1016/j.ifset.2015.06.008.
  • Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta. 2011, 703(1), 8–18. DOI: 10.1016/j.aca.2011.07.018.
  • Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J. A.; Ibañez, E. Pressurized Liquid Extraction. In Liquid-Phase Extraction; Colin F. Poole, ed.;Elsevier Amsterdam, 2020; 375–398. DOI:10.1016/B978-0-12-816911-7.00013-X.
  • Li, J.; Guo, Z. Concurrent Extraction and Transformation of Bioactive Phenolic Compounds from Rapeseed Meal Using Pressurized Solvent Extraction System. Ind. Crops Prod. 2016, 94, 152–159. DOI: 10.1016/j.indcrop.2016.08.045.
  • Pińkowska, H.; Krzywonos, M.; Wolak, P. Valorization of rapeseed meal by hydrothermal treatment – effect of reaction parameters on low molecular products distribution. Cellulose Chem. Technol. 2019, 53(7–8), 755–765. DOI: 10.35812/CelluloseChemTechnol.2019.53.74.
  • Herrero, M.; Ibañez, E. Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. J. Supercritical Fluids. 2018, 134, 252–259. DOI: 10.1016/j.supflu.2017.12.002.
  • Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules. 2018, 23(10), 2625. DOI: 10.3390/molecules23102625.
  • Imran, A. 2021. Effects of Air Frying and Enzymatic Oxidation on the Phenolic Content and Antioxidant Properties of Lower Grade Yellow Mustard Seeds. PhD thesis, University of Manitoba, 122. http://hdl.handle.net/1993/35690
  • Vuorela, S.; Meyer, A. S.; Heinonen, M. Quantitative Analysis of the Main Phenolics in Rapeseed Meal and Oils Processed Differently Using Enzymatic Hydrolysis and HPLC. Eur. Food Res. Technol. 2003, 217(6), 517–523. DOI: 10.1007/s00217-003-0811-3.
  • Gligor, O. Enzyme-Assisted Extractions of Polyphenols – a Comprehensive Review. Trends Food Sci. Technol. 2019, 47. DOI: 10.1016/j.tifs.2019.03.029.
  • Shahidi, F.; Yeo, J. Insoluble-bound phenolics in food. Molecules. 2016, 21(9), 1216. DOI: 10.3390/molecules21091216.
  • Tang, Y.; Zhang, B.; Li, X.; Chen, P. X.; Zhang, H.; Liu, R.; Tsao, R. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects. J. Agric. Food Chem. 2016, 64(8), 1712–1719. DOI: 10.1021/acs.jafc.5b05761.
  • Singh, S.; Dwivedi, O. P.; Mishra, S. Recent development in ferulic acid esterase for industrial production. In Bioprocessing for Biomolecules Production; Molina, G., Gupta, V., Singh, B., Gathergood, N., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2019; pp 373–382. DOI: 10.1002/9781119434436.ch17.
  • Mota, M. I. F.; Rodrigues Pinto, P. C.; Loureiro, J. M.; Rodrigues, A. E. Recovery of Vanillin and Syringaldehyde from Lignin Oxidation: A Review of Separation and Purification Processes. Sep. Purif. Rev. 2016, 45(3), 227–259. DOI: 10.1080/15422119.2015.1070178.
  • Berthod, A.; Carda-Broch, S. Determination of Liquid–Liquid Partition Coefficients by Separation Methods. J. Chromatogr. A. 2004, 1037(1–2), 3–14. DOI: 10.1016/j.chroma.2004.01.001.
  • Hong, S. T.; Lee, E. S.; Lee, K. T.; Shin, J. A. The removal method of sinapine from supercritical extract of Rapeseed Cake, and emulsifier prepared by the removal method. KR101742035B1, June 2017.
  • Mohanty, S. Modeling of Liquid-Liquid Extraction Column: A Review. Rev. Chem. Eng. 2000, 16(3). DOI: 10.1515/REVCE.2000.16.3.199.
  • Dabrowski, K. J.; Sosulski, F. W. Quantitation of Free and Hydrolyzable Phenolic Acids in Seeds by Capillary Gas-Liquid Chromatography. J. Agric. Food Chem. 1984, 32(1), 123–127. DOI: 10.1021/jf00121a031.
  • Noubigh, A.; Abderrabba, M.; Provost, E. Temperature and Salt Addition Effects on the Solubility Behaviour of Some Phenolic Compounds in Water. J. Chem. Thermodynam. 2007, 39(2), 297–303. DOI: 10.1016/j.jct.2006.06.014.
  • Chen, G. Q.; Talebi, S.; Gras, S. L.; Weeks, M.; Kentish, S. E. A Review of Salty Waste Stream Management in the Australian Dairy Industry. J. Environ. Manage. 2018, 224, 406–413. DOI: 10.1016/j.jenvman.2018.07.056.
  • Rongwong, W.; Goh, K. Resource Recovery from Industrial Wastewaters by Hydrophobic Membrane Contactors: A Review. J. Env. Chem. Eng. 2020, 8(5), 104242. DOI: 10.1016/j.jece.2020.104242.
  • Bojczuk, M.; Żyżelewicz, D.; Hodurek, P. Centrifugal Partition Chromatography - A Review of Recent Applications and Some Classic References. J. Sep. Sci. 2017, 40(7), 1597–1609. DOI: 10.1002/jssc.201601221.
  • Nowak, H.; Kujawa, K.; Zadernowski, R.; Roczniak, B.; Kozłowska, H. Antioxidative and Bactericidal Properties of Phenolic Compounds in Rapeseeds. Fett Wiss. Technol. 1992, 94(4), 149–152. DOI: 10.1002/lipi.19920940406.
  • Xu, L.; Diosady, L. L. Rapid Method for Total Phenolic Acid Determination in Rapeseed/Canola Meals. Food Res. Int. 1997, 30(8), 571–574. DOI: 10.1016/S0963-9969(98)00022-2.
  • Castro-Muñoz, R.; Boczkaj, G.; Gontarek, E.; Cassano, A.; Fíla, V. Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review. Trends Food Sci. Technol. 2020, 95, 219–232. DOI: 10.1016/j.tifs.2019.12.003.
  • Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic Compounds Recovered from Agro-Food by-Products Using Membrane Technologies: An Overview. Food Chem. 2016, 213, 753–762. DOI: 10.1016/j.foodchem.2016.07.030.
  • Prapakornwiriya, N.; Diosady, L. L. Isolation of Yellow Mustard Proteins by a Microfil Tration-Based Process. Int J. Appl. Sci. Eng. 2004, 2, 127–135. https://gigvvy.com/journals/ijase/articles/ijase-200407-2-2-127.
  • Diosady, L. L.; Chen B-K, X. L.; Xu, L. Production of high-quality protein isolated from defatted meals of brassica seeds. US patent, US6,905,713 B2, June 14, 2005.
  • Bérot, S.; Compoint, J. P.; Larré, C.; Malabat, C.; Guéguen, J. Large Scale Purification of Rapeseed Proteins (Brassica Napus L.). J. Chromatogr. B. 2005, 818(1), 35–42. DOI: 10.1016/j.jchromb.2004.08.001.
  • Rubino, M. I.; Arntfield, S. D.; Charlton, J. L. Evaluation of Alkaline Conversion of Sinapic Acid to Thomasidioic Acid. J. Agric. Food Chem. 1996, 44(6), 1399–1402. DOI: 10.1021/jf950431e.
  • Prapakornwiriya, N.; Diosady, L. L. Recovery of Sinapic Acid from a Waste Stream in the Processing of Yellow Mustard Protein Isolate. J. Food Process Eng. 2008, 31(2), 173–185. DOI: 10.1111/j.1745-4530.2007.00146.x.
  • Xu, L.; Diosady, L. L. Interactions between Canola Proteins and Phenolic Compounds in Aqueous Media. Food Res. Int. 2000, 33(9), 725–731. DOI: 10.1016/S0963-9969(00)00062-4.
  • Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein–Phenolic Interactions and Associated Changes. Food Res. Int. 2013, 51(2), 954–970. DOI: 10.1016/j.foodres.2013.02.009.
  • Thiel, A.; Tippkötter, N.; Suck, K.; Sohling, U.; Ruf, F.; Ulber, R. New Zeolite Adsorbents for Downstream Processing of Polyphenols from Renewable Resources: New Zeolite Adsorbents for Downstream Processing. Eng. Life Sci. 2013, 13(3), 239–246. DOI: 10.1002/elsc.201200188.
  • Zhang, Z.; He, S.; Liu, H.; Sun, X.; Ye, Y.; Cao, X.; Wu, Z.; Sun, H. Effect of PH Regulation on the Components and Functional Properties of Proteins Isolated from Cold-Pressed Rapeseed Meal through Alkaline Extraction and Acid Precipitation. Food Chem. 2020, 327, 126998. DOI: 10.1016/j.foodchem.2020.126998.
  • Rubino, M. I.; Arntfield, S. D.; Charlton, J. L. Conversion of Phenolics to Lignans: Sinapic Acid to Thomasidioic Acid. J. Am. Oil Chem. Soc. 1995, 72(12), 1465–1470. DOI: 10.1007/BF02577839.
  • Wanasundara, P. K. J. P. D. Mcintosh. Procédé d’extraction Aqueux de Protéines Contenus Dans Des Graines d’oléagineux, Conference at University of Paris, Paris, December 4, 2008.
  • Albe Slabi, S.; Mathé, C.; Framboisier, X.; Defaix, C.; Mesieres, O.; Galet, O.; Kapel, R. A New SE-HPLC Method for Simultaneous Quantification of Proteins and Main Phenolic Compounds from Sunflower Meal Aqueous Extracts. Anal. Bioanal. Chem. 2019, 411(10), 2089–2099. DOI: 10.1007/s00216-019-01635-2.
  • Prapakornwiriya, N.; Diosady, L. L. Recovery of Sinapic Acid from the Waste Effluent of Mustard Protein Isolation by Ion Exchange Chromatography. J. Am. Oil Chem. Soc. 2014, 91(2), 357–362. DOI: 10.1007/s11746-013-2366-1.
  • Kammerer, D. R.; Kammerer, J.; Carle, R. Resin Adsorption and Ion Exchange to Recover and Fractionate Polyphenols. In Polyphenols in Plants, Ronald Ross Watson,ed.; Elsevier Amsterdam, 2014; 219–230. DOI:10.1016/B978-0-12-397934-6.00011-5.
  • Soto, M. L.; Moure, A.; Domínguez, H.; Parajó, J. C. Recovery, Concentration and Purification of Phenolic Compounds by Adsorption: A Review. J. Food Eng. 2011, 105(1), 1–27. DOI: 10.1016/j.jfoodeng.2011.02.010.
  • Iguchi, A.; Ogawa, S.; Yamamoto, Y.; Hara, S. Facile Preparation of Purified Sinapate Ethyl Ester from Rapeseed Meal Extracts Using Cation-Exchange Resin in Dual Role as Adsorber and Catalyst. J. Oleo Sci. 2021, 70(7), 1007–1012. DOI: 10.5650/jos.ess21036.
  • Moreno-González, M.; Girish, V.; Keulen, D.; Wijngaard, H.; Lauteslager, X.; Ferreira, G.; Ottens, M. Recovery of Sinapic Acid from Canola/Rapeseed Meal Extracts by Adsorption. Food Bioprod. Process. 2020, 120, 69–79. DOI: 10.1016/j.fbp.2019.12.002.
  • Lomascolo, A. Procédé de préparation d’un composé vinylique à partir d’une composé cinnamique précurseur du tourteau de colza. French patent, WO2017072450A1, May 4, 2017.
  • Thiel, A.; Ullmann, D.; Boszulak, W.; Hruschka, S.; Hruschka, S. Method for obtaining sinapic acid from a native material mixture. French patent, WO2015181203A1, December 3, 2015.
  • Amarowicz, R.; Kolodziejczyk, P. P.; Pegg, R. B. Chromatographic Separation of Phenolic Compounds from Rapeseed by a Sephadex LH‐20 Column with Ethanol as the Mobile Phase. J. Liq. Chromatogr. Rel. Technol. 2003, 26(13), 2157–2165. DOI: 10.1081/JLC-120022400.
  • Moreno-González, M.; Keulen, D.; Gomis-Fons, J.; Gomez, G. L.; Nilsson, B.; Ottens, M. Continuous Adsorption in Food Industry: The Recovery of Sinapic Acid from Rapeseed Meal Extract. Sep. Purif. Technol. 2021, 254, 117403. DOI: 10.1016/j.seppur.2020.117403.
  • Amarowicz, R.; Wanasundara, U. N.; Karamać, M.; Shahidi, F. Antioxidant Activity of Ethanolic Extract of Mustard Seed. Food/Nahrung. 1996, 40(5), 261–263. DOI: 10.1002/food.19960400506.
  • Diosady, L. L.; Xu, L.; Chen, B.-K. Production of high -quality protein isolated from oil seeds. us patent, US8048463 B2, November 1, 2011.
  • Handojo, L.; Wardani, A. K.; Regina, D.; Bella, C.; Kresnowati, M. T. A. P.; Wenten, I. G. Electro-Membrane Processes for Organic Acid Recovery. RSC Adv. 2019, 9(14), 7854–7869. DOI: 10.1039/C8RA09227C.
  • Rathore, A. S.; Kumar, D.; Kateja, N. Recent Developments in Chromatographic Purification of Biopharmaceuticals. Biotechnol. Lett. 2018, 40(6), 895–905. DOI: 10.1007/s10529-018-2552-1.
  • Van der Vorst, G.; Van Langenhove, H.; De Paep, F.; Aelterman, W.; Dingenen, J.; Dewulf, J. Exergetic Life Cycle Analysis for the Selection of Chromatographic Separation Processes in the Pharmaceutical Industry: Preparative HPLC versus Preparative SFC. Green Chem. 2009, 11(7), 1007. DOI: 10.1039/b901151j.
  • Gaber, Y.; Törnvall, U.; Kumar, M. A.; Ali Amin, M.; Hatti-Kaul, R. HPLC-EAT (Environmental Assessment Tool): A Tool for Profiling Safety, Health and Environmental Impacts of Liquid Chromatography Methods. Green Chem. 2011, 13(8), 2021. DOI: 10.1039/c0gc00667j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.