1,060
Views
3
CrossRef citations to date
0
Altmetric
Review

Green Extraction Methods for Isolation of Bioactive Substances from Coffee Seed and Spent

, , , & ORCID Icon
Pages 24-42 | Received 17 Jun 2021, Accepted 12 Dec 2021, Published online: 31 Jan 2022

References

  • Ahmad, I.; Surya Pertiwi, A.; Kembaren, Y. H.; Rahman, A.; Mun’im, A. Application of Natural Deep Eutectic Solvent-Based Ultrasonic Assisted Extraction of Total Polyphenolic and Caffeine Content from Coffee Beans (Coffea Beans L.) For Instant Food Products. J. App. Pharm. Sci. 2018, 8, 138–143. 10.7324/JAPS.2018.8819.
  • Davis, A. P.; Govaerts, R.; Bridson, D. M.; Stoffelen, P. An Annotated Taxonomic Conspectus of the Genus Coffea (Rubiaceae). Bot. J. Linn. Soc. 2006, 152(4), 465–512. 10.1111/j.1095-8339.2006.00584.x.
  • Vinícius de Melo Pereira, G.; Soccol, V. T.; Brar, S. K.; Neto, E.; Soccol, C. R. Microbial Ecology and Starter Culture Technology in Coffee Processing. Crit. Rev. Food Sci. Nutr. 2017, 57(13), 2775–2788. 10.1080/10408398.2015.1067759.
  • Lee, L. W.; Cheong, M. W.; Curran, P.; Yu, B.; Liu, S. Q. Coffee Fermentation and Flavor - an Intricate and Delicate Relationship. Food Chem. 2015, 185, 182–191. 10.1016/j.foodchem.2015.03.124.
  • Eira, M. T. S.; Amaral Da Silva, E. A.; de Castro, R. D.; Dussert, S.; Walters, C.; Bewley, J. D.; Hilhorst, H. W. M. Coffee Seed Physiology. Braz. J. Plant Physiol. 2006, 18(1), 149–163. 10.1590/S1677-04202006000100011.
  • Patay, É. B.; Bencsik, T.; Papp, N. Phytochemical Overview and Medicinal Importance of Coffea Species from the past until Now, Asian Pac. J. Trop. Med. 2016, 9, 1127–1135. 10.1016/j.apjtm.2016.11.008.
  • Bagchi, D.; Moriyama, H., and Swaroop, A. Green Coffee Bean Extract in Human Health, 2016, 1st ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA.
  • Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The Content of Polyphenols in Coffee Beans as Roasting, Origin and Storage Effect. Eur. Food Res. Technol. 2020, 246, 33–39. 10.1007/s00217-019-03388-9.
  • Nieber, K. The Impact of Coffee on Health. Planta Med. 2017, 83, 1256–1263. 10.1055/s-0043-115007.
  • Syakfanaya, A. M.; Saputri, F. C.; Mun’im, A. Simultaneously Extraction of Caffeine and Chlorogenic Acid from Coffea Canephora Bean Using Natural Deep Eutectic Solvent-Based Ultrasonic Assisted Extraction. Pharmacogn. J. 2019, 11, 267–271. 10.5530/pj.2019.11.41.
  • Shan, J.; Suzuki, T.; Suhandy, D.; Ogawa, Y.; Kondo, N. Chlorogenic Acid (CGA) Determination in Roasted Coffee Beans by near Infrared (NIR) Spectroscopy. Eng. Agric. Environ. Food. 2014, 7, 139–142. 10.1016/j.eaef.2014.08.003.
  • Vitaglione, P.; Fogliano, V.; Pellegrini, N. C. Colon Function and Colorectal Cancer. Food Funct. 2012, 3, 916–922. 10.1039/c2fo30037k.
  • Ludwig, I. A.; Clifford, M. N.; Lean, M. E. J.; Ashihara, H.; Crozier, A. Coffee: Biochemistry and Potential Impact on Health. Food Funct. 2014, 5, 1695–1717. 10.1039/c4fo00042k.
  • van Dijk, A. E.; Olthof, M. R.; Meeuse, J. C.; Seebus, E.; Heine, R. J.; van Dam, R. M. Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance. Diabetes Care. 2009, 32, 1023–1025. 10.2337/dc09-0207.
  • Jeszka-Skowron, M.; Frankowski, R.; Zgoła-Grześkowiak, A. Comparison of Methylxantines, Trigonelline, Nicotinic Acid and Nicotinamide Contents in Brews of Green and Processed Arabica and Robusta Coffee Beans – Influence of Steaming, Decaffeination and Roasting Processes on Coffee Beans. LWT - Food Sci. Technol. 2020, 125, 109344. 10.1016/j.lwt.2020.109344.
  • Butt, M. S.; Sultan, M. T. Coffee and Its Consumption: Benefits and Risks. Crit. Rev. Food Sci. Nutr. 2011, 51, 363–373. 10.1080/10408390903586412.
  • Higdon, J. V.; Frei, B. Coffee and Health: A Review of Recent Human Research. Crit. Rev. Food Sci. Nutr. 2006, 46, 101–123. 10.1080/10408390500400009.
  • Santos, R. M. M.; Lima, D. R. A. Coffee Consumption, Obesity and Type 2 Diabetes: A Mini-Review. 2016. Eur. J. Nutr. 2016, 55, 1345–1358. 10.1007/s00394-016-1206-0.
  • Minamisawa, M.; Yoshida, S.; Takai, N. Determination of Biologically Active Substances in Roasted Coffees Using a Diode-Array HPLC System. Anal. Sci. 2004, 20, 325–328. 10.2116/analsci.20.325.
  • Mazzafera, P.; Baumann, T. W.; Shimizu, M. M.; Silvarolla, M. B. Decaf and the Steeplechase Towards Decaffito-the Coffee from Caffeine-Free Arabica Plants. Trop. Plant Biol. 2009, 2, 63–76. 10.1007/s12042-009-9032-7.
  • Kovalcik, A.; Obruca, S.; Marova, I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018, 110, 104–119. 10.1016/j.fbp.2018.05.002.
  • Getachew, A. T.; Chun, B. S. Influence of Pretreatment and Modifiers on Subcritical Water Liquefaction of Spent Coffee Grounds: A Green Waste Valorization Approach. J. Clean. Prod. 2017, 142, 3719–3727. 10.1016/j.jclepro.2016.10.096.
  • Afolabi, O. O. D.; Sohail, M.; Cheng, Y. L. Optimisation and Characterisation of Hydrochar Production from Spent Coffee Grounds by Hydrothermal Carbonisation. Renew. Energy. 2020, 147, 1380–1391. 10.1016/j.renene.2019.09.098.
  • Kourmentza, C.; Economou, C. N.; Tsafrakidou, P.; Kornaros, M. Spent Coffee Grounds Make Much More than Waste: Exploring Recent Advances and Future Exploitation Strategies for the Valorization of an Emerging Food Waste Stream. J. Clean. Prod. 2018, 172, 980–992. 10.1016/j.jclepro.2017.10.088.
  • Semaan, G.; Shobana, S.; Arvindnarayan, S.; Bhatt, N.; Dharmaraja, J., and Kumar, G. Food Waste Biorefinery: A Case Study for Spent Coffee Grounds (Scgs) into Bioactive Compounds across the European Union. In Waste Biorefinery; Bhaskar, Thallada., Sunita , Varjani., Ashok , Pandey., and Eldon, R. Rene., ed.; Elsevier: Amsterdam, Netherlands, 2021; pp 459–473.
  • Ballesteros, L. F.; Teixeira, J. A.; Mussatto, S. I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioproc. Tech. 2014, 7, 3493–3503. 10.1007/s11947-014-1349-z.
  • Zarrinbakhsh, N.; Wang, T.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A. K. Characterization of Wastes and Coproducts from the Coffee Industry for Composite Material Production. Bioresources. 2016, 11, 7637–7653. 10.15376/biores.11.3.7637-7653.
  • Moustafa, H.; Guizani, C.; Dufresne, A. Sustainable Biodegradable Coffee Grounds Filler and Its Effect on the Hydrophobicity, Mechanical and Thermal Properties of Biodegradable PBAT Composites. J. Appl. Polym. Sci. 2017, 134. 10.1002/app.44498.
  • Janissen, B.; Huynh, T. Chemical Composition and Value-Adding Applications of Coffee Industry by-Products: A Review. Resour. Conserv. Recycl. 2018, 128, 110–117. 10.1016/j.resconrec.2017.10.001.
  • Ribeiro, J. P.; Vicente, E. D.; Gomes, A. P.; Nunes, M. I.; Alves, C.; Tarelho, L. A. C. Effect of Industrial and Domestic Ash from Biomass Combustion, and Spent Coffee Grounds, on Soil Fertility and Plant Growth: Experiments at Field Conditions. Environ. Sci. Pollut. Res. 2017, 24, 15270–15277. 10.1007/s11356-017-9134-y.
  • Zabaniotou, A.; Kamaterou, P. Food Waste Valorization Advocating Circular Bioeconomy - A Critical Review of Potentialities and Perspectives of Spent Coffee Grounds Biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. 10.1016/j.jclepro.2018.11.230.
  • Huang, H. C.; Wei, C. M.; Siao, J. H.; Tsai, T. C.; Ko, W. P.; Chang, K. J.; Hii, C. H.; Chang, T. M. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways. Evid. Based Complement. Alternat. Med. 2016, 2016. 10.1155/2016/5860296.
  • López-Barrera, D. M.; Vázquez-Sánchez, K.; Loarca-Piña, M. G. F.; Campos-Vega, R. Spent Coffee Grounds, an Innovative Source of Colonic Fermentable Compounds, Inhibit Inflammatory Mediators in Vitro. Food Chem. 2016, 212, 282–290. 10.1016/j.foodchem.2016.05.175.
  • Fiol, N.; Escudero, C.; Villaescusa, I. Re-Use of Exhausted Ground Coffee Waste for Cr(VI) Sorption. Sep. Sci. Technol. 2008, 43, 582–596. 10.1080/01496390701812418.
  • Caetano, N. S.; Caldeira, D.; Martins, A. A.; Mata, T. M. Valorisation of Spent Coffee Grounds: Production of Biodiesel via Enzymatic Catalysis with Ethanol and a Co-Solvent. Waste Biomass Valorization. 2017, 8, 1981–1994. 10.1007/s12649-016-9790-z.
  • Cordoba, N.; Pataquiva, L.; Osorio, C.; Moreno, F. L. M.; Ruiz, R. Y. Effect of Grinding, Extraction Time and Type of Coffee on the Physicochemical and Flavour Characteristics of Cold Brew Coffee. Sci. Rep. 2019, 9, 1–12. 10.1038/s41598-019-44886-w.
  • Pasquel Reátegui, J. L.; Machado, A. P. D. F.; Barbero, G. F.; Rezende, C. A.; Martínez, J. Extraction of Antioxidant Compounds from Blackberry (Rubus Sp.) Bagasse Using Supercritical CO2 Assisted by Ultrasound. J. Supercrit. Fluids. 2014, 94, 223–233. 10.1016/j.supflu.2014.07.019.
  • Kerton, F., and Marriott, R. Alternative Solvents for Green Chemistry; Green Chemistry Series, The Royal Society of Chemistry: UK, 2013; pp 31−50.
  • Rombaut, N.; Tixier, A.-S.; Bily, A.; Chemat, F. Green Extraction Processes of Natural Products as Tools for Biorefinery. Biofuel. Bioprod. Biorefin. 2014, 8, 530–544. 10.1002/bbb.1486.
  • Chemat, F.; Vian, M. A.; Ravi, H. K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Tixier, A. S. F. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles. Appl. Prosp. Mol. 2019, 24, 3007. 10.3390/molecules24163007.
  • Wen, L.; Zhang, Z.; Zhao, M.; Senthamaraikannan, R.; Padamati, R. B.; Sun, D. W.; Tiwari, B. K. Green Extraction of Soluble Dietary Fibre from Coffee Silverskin: Impact of Ultrasound/Microwave-Assisted Extraction. Int. J. Food Sci. 2020, 55, 2242–2250. 10.1111/ijfs.14477.
  • Chemat, F.; Vian, M. A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. 10.3390/ijms13078615.
  • Dai, Y.; van Spronsen, J.; Witkamp, G. J.; Verpoorte, R.; Choi, Y. H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta. 2013, 766, 61–68. 10.1016/j.aca.2012.12.019.
  • Yuniarti, E.; Saputri, F. C.; Mun’im, A. Application of the Natural Deep Eutectic Solvent Choline Chloridesorbitol to Extract Chlorogenic Acid and Caffeine from Green Coffee Beans (Coffea Canephora. J. Appl. Pharm. Sci. 2019, 9, 82–90. 10.7324/JAPS.2019.90312.
  • Wei, Z. F.; Wang, X. Q.; Peng, X.; Wang, W.; Zhao, C. J.; Zu, Y. G.; Fu, Y. J. Fast and Green Extraction and Separation of Main Bioactive Flavonoids from Radix Scutellariae. Ind. Crops Prod. 2015, 63, 175–181. 10.1016/j.indcrop.2014.10.013.
  • Ruesgas-Ramón, M.; Suárez-Quiroz, M. L.; González-Ríos, O.; Baréa, B.; Cazals, G.; Figueroa-Espinoza, M. C.; Durand, E. Biomolecules Extraction from Coffee and Cocoa By- and Co-Products Using Deep Eutectic Solvents. J. Sci. Food Agric. 2020, 100, 81–91. 10.1002/jsfa.9996.
  • Carteri Coradi, P.; Meira Borém, F.; Saath, R., and Rosemeire Marques, E. Effect of Drying and Storage Conditions on the Quality of Natural and Washed Coffee. Coffee Sci. 2007, 2, 38–47. Accessed on 12 Feb 2021. http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/37
  • Rodriguez, Y. F. B.; Guzman, N. G.; Hernandez, J. G. Effect of the Postharvest Processing Method on the Biochemical Composition and Sensory Analysis of Arabica Coffee. Eng. Agricola. 2020, 40, 177–183. 10.1590/1809-4430-ENG.AGRIC.V40N2P177-183/2020.
  • Dong, W.; Chen, Q.; Wei, C.; Hu, R.; Long, Y.; Zong, Y.; Chu, Z. Comparison of the Effect of Extraction Methods on the Quality of Green Coffee Oil from Arabica Coffee Beans: Lipid Yield, Fatty Acid Composition, Bioactive Components, and Antioxidant Activity. Ultrason. Sonochem. 2021, 74, 105578. 10.1016/j.ultsonch.2021.105578.
  • Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F. L.; Ruiz, Y. Coffee Extraction: A Review of Parameters and Their Influence on the Physicochemical Characteristics and Flavour of Coffee Brews. Trends Food Sci. Technol. 2020, 96, 45–60. 10.1016/j.tifs.2019.12.004.
  • Hameed, A.; Hussain, S. A.; Ijaz, M. U.; Ullah, S.; Pasha, I.; Suleria, H. A. R. Farm to Consumer: Factors Affecting the Organoleptic Characteristics of Coffee. II: Postharvest Processing Factors. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1184–1237. 10.1111/1541-4337.12365.
  • Lopes, G. R.; Passos, C. P.; Rodrigues, C.; Teixeira, J. A.; Coimbra, M. A. Impact of Microwave-Assisted Extraction on Roasted Coffee Carbohydrates, Caffeine, Chlorogenic Acids and Coloured Compounds. Food Res. Int. 2020, 129, 108864. 10.1016/j.foodres.2019.108864.
  • Farah, A.; Donangelo, C. M. Phenolic Compounds in Coffee. Braz. J. Plant Physiol. 2006, 18, 23–36. 10.1590/S1677-04202006000100003.
  • Wianowska, D.; Gil, M. Recent Advances in Extraction and Analysis Procedures of Natural Chlorogenic Acids. Phytochem. Rev. 2019, 18, 273–302. 10.1007/s11101-018-9592-y.
  • Moon, J. K.; Hyui Yoo, S. U. N.; Shibamoto, T. Role of Roasting Conditions in the Level of Chlorogenic Acid Content in Coffee Beans: Correlation with Coffee Acidity. J. Agric. Food Chem. 2009, 57, 5365–5369. 10.1021/jf900012b.
  • El-Abassy, R. M.; Donfack, P.; Materny, A. Discrimination between Arabica and Robusta Green Coffee Using Visible Micro Raman Spectroscopy and Chemometric Analysis. Food Chem. 2011, 126, 1443–1448. 10.1016/j.foodchem.2010.11.132.
  • Babova, O.; Occhipinti, A.; Maffei, M. E. Chemical Partitioning and Antioxidant Capacity of Green Coffee (Coffea Arabica and Coffea Canephora) of Different Geographical Origin. Phytochemistry. 2016, 123, 33–39. 10.1016/j.phytochem.2016.01.016.
  • Alonso-Salces, R. M.; Serra, F.; Remero, F.; Heberger, K. Botanical and Geographical Characterization of Green Coffee (Coffea Arabica and Coffea Canephora): Chemometric Evaluation of Phenolic and Methylxanthine Contents. J. Agric. Food Chem. 2009, 57, 4224–4235. 10.1021/jf8037117.
  • Farah, A.; de Paulis, T.; Trugo, L. C.; Martin, P. R. Effect of Roasting on the Formation of Chlorogenic Acid Lactones in Coffee. J. Agric. Food Chem. 2005, 53, 1505–1513. 10.1021/jf048701t.
  • Baeza, G.; Sarriá, B.; Bravo, L.; Mateos, R. Exhaustive Qualitative LC-DAD-MSn Analysis of Arabica Green Coffee Beans: Cinnamoyl-Glycosides and Cinnamoylshikimic Acids as New Polyphenols in Green Coffee. J. Agric. Food Chem. 2016, 64, 9663–9674. 10.1021/acs.jafc.6b04022.
  • Mehari, B.; Redi-Abshiro, M.; Chandravanshi, B. S.; Atlabachew, M.; Combrinck, S.; McCrindle, R. Simultaneous Determination of Alkaloids in Green Coffee Beans from Ethiopia: Chemometric Evaluation of Geographical Origin. Food Anal. Methods. 2016, 9, 1627–1637. 10.1007/s12161-015-0340-2.
  • Clifford, M. N.; Knight, S. The Cinnamoyl-Amino Acid Conjugates of Green Robusta Coffee Beans. Food Chem. 2004, 87, 457–463. 10.1016/j.foodchem.2003.12.020.
  • Clifford, M. N.; Jarvis, T. The Chlorogenic Acids Content of Green Robusta Coffee Beans as a Possible Index of Geographic Origin. Food Chem. 1988, 29, 291–298. 10.1016/0308-8146(88)90044-1.
  • Alonso-Salces, R. M.; Guillou, C.; Berrueta, L. A. Liquid Chromatography Coupled with Ultraviolet Absorbance Detection, Electrospray Ionization, Collision-Induced Dissociation and Tandem Mass Spectrometry on a Triple Quadrupole for the on-Line Characterization of Polyphenols and Methylxanthines in Green Coffee Beans. Rapid Commun. Mass Spectrom. 2009, 23, 363–383. 10.1002/rcm.3884.
  • Petersen, M. Hydroxycinnamoyltransferases in Plant Metabolism. Phytochem. Rev. 2016, 15, 699–727. 10.1007/s11101-015-9417-1.
  • Zhang, Y.; Shi, P.; Qu, H.; Cheng, Y. Characterization of Phenolic Compounds in Erigeron Breviscapus by Liquid Chromatography Coupled to Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2971–2984. 10.1002/rcm.3166.
  • Mateos, R.; Baeza, G.; Sarriá, B.; Bravo, L. Improved LC-MSn Characterization of Hydroxycinnamic Acid Derivatives and Flavonols in Different Commercial Mate (Ilex Paraguariensis) Brands. Quantification of Polyphenols, Methylxanthines, and Antioxidant Activity. Food Chem. 2018, 241, 232–241. 10.1016/j.foodchem.2017.08.085.
  • Correia, A. M. N. G.; Leitão, M. C. A.; Clifford, M. N. Caffeoyl-Tyrosine and Angola II as Characteristic Markers for Angolan Robusta Coffees. Food Chem. 1995, 53, 309–313. 10.1016/0308-8146(95)93938-N.
  • Farah, A.; de Paulis, T.; Moreira, D. P.; Trugo, L. C.; Martin, P. R. Chlorogenic Acids and Lactones in Regular and Water-Decaffeinated Arabica Coffees. J. Agric. Food Chem. 2006, 54, 374–381. 10.1021/jf0518305.
  • Pobudkowska, A.; Domańska, U.; Kryska, J. A. The Physicochemical Properties and Solubility of Pharmaceuticals - Methyl Xanthines. J. Chem. Thermodyn. 2014, 79, 41–48. 10.1016/j.jct.2014.05.005.
  • Ebrahimzadeh, G.; Nodehi, R. N.; Alimohammadi, M.; Kahkah, M. R. R.; Mahvi, A. H. Monitoring of Caffeine Concentration in Infused Tea, Human Urine, Domestic Wastewater and Different Water Resources in Southeast of Iran-caffeine an Alternative Indicator for Contamination of Human Origin. J. Environ. Manage. 2021, 283, 111971. 10.1016/j.jenvman.2021.111971.
  • Farah, A.; Monteiro, M. C.; Calado, V.; Franca, A. S.; Trugo, L. C. Correlation between Cup Quality and Chemical Attributes of Brazilian Coffee. Food Chem. 2006, 98, 373–380. 10.1016/j.foodchem.2005.07.032.
  • de Paula Lima, J., and Farah, A. CHAPTER 23. Caffeine and Minor Methylxanthines in Coffee. In Coffee; Adriana, Farah., ed.; Royal Society of Chemistry: London, UK, 2019; pp 543–564.
  • Farah, A.; Ferreira, T., and Vieira, A. C. CHAPTER 27. Trigonelline and Derivatives. In Coffee: Production, Quality and Chemistry; Adriana, Farah., ed.; Royal Society of Chemistry: London, UK, 2019; pp 627–640.
  • Yisak, H.; Redi-Abshiro, M.; Chandravanshi, B. S. Selective Determination of Caffeine and Trigonelline in Aqueous Extract of Green Coffee Beans by FT-MIR-ATR Spectroscopy. Vib. Spectrosc. 2018, 97, 33–38. 10.1016/j.vibspec.2018.05.003.
  • Perrone, D.; Donangelo, C. M.; Farah, A. Fast Simultaneous Analysis of Caffeine, Trigonelline, Nicotinic Acid and Sucrose in Coffee by Liquid Chromatography-Mass Spectrometry. Food Chem. 2008, 110, 1030–1035. 10.1016/j.foodchem.2008.03.012.
  • Ky, C. L.; Louarn, J.; Dussert, S.; Guyot, B.; Hamon, S.; Noirot, M. C. Trigonelline, Chlorogenic Acids and Sucrose Diversity in Wild Coffea Arabica L. And C. Canephora P. Accessions, Food Chem. 2001, 75, 223–230. 10.1016/S0308-8146(01)00204-7.
  • Arauz, J.; Ramos-Tovar, E., and Muriel, P. Coffee and the Liver. In Liver Pathophysiology: Therapies and Antioxidants; Pablo, Muriel., ed.; Elsevier: Amsterdam, Netherlands, 2017; pp. 675–685.
  • de Maria, C. A. B.; Trugo, L. C.; Aquino Neto, F. R.; Moreira, R. F. A.; Alviano, C. S. Composition of Green Coffee Water-Soluble Fractions and Identification of Volatiles Formed during Roasting. Food Chem. 1996, 55, 203–207. 10.1016/0308-8146(95)00104-2.
  • Oestreich-Janzen, S. Chemistry of Coffee. In Comprehensive Natural Products II: Chemistry and Biology;Elsevier Ltd: Amsterdam, Netherlands, 2010, Vol. 3, pp. 1085–1117.
  • Dias, R.; Benassi, M. Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Beverages. 2015, 1, 127–139. 10.3390/beverages1030127.
  • Farag, M. A.; Porzel, A.; Wessjohann, L. A. Unraveling the Active Hypoglycemic Agent Trigonelline in Balanites Aegyptiaca Date Fruit Using Metabolite Fingerprinting by NMR. J. Pharm. Biomed. 2015, 115, 383–387. 10.1016/j.jpba.2015.08.003.
  • Speer, K.; Kölling-Speer, I. The Lipid Fraction of the Coffee Bean. Braz. J. Plant Physiol. 2006, 18, 201–216. 10.1590/S1677-04202006000100014.
  • Rubayiza, A. B.; Meurens, M. Chemical Discrimination of Arabica and Robusta Coffees by Fourier Transform Raman Spectroscopy. J. Agric. Food Chem. 2005, 53, 4654–4659. 10.1021/jf0478657.
  • Schievano, E.; Finotello, C.; De Angelis, E.; Mammi, S.; Navarini, L. Rapid Authentication of Coffee Blends and Quantification of 16-O-Methylcafestol in Roasted Coffee Beans by Nuclear Magnetic Resonance. J. Agric. Food Chem. 2014, 62, 12309–12314. 10.1021/jf505013d.
  • Kurzrock, T.; Speer, K. Diterpenes and Diterpene Esters in Coffee. Food Rev. Int. 2001, 17, 433–450. 10.1081/FRI-100108532.
  • Speer, K., and Kölling-Speer, I. CHAPTER 20. Lipids. In Coffee Adriana, Farah., ed.; Royal Society of Chemistry: London, UK, 2019; pp 458–504.
  • Dias, R. C. E.; de Faria-machado, A. F.; Mercadante, A. Z.; Bragagnolo, N.; Benassi, M. D. T. Roasting Process Affects the Profile of Diterpenes in Coffee. Eur. Food Res. Technol. 2014, 239, 961–970. 10.1007/s00217-014-2293-x.
  • Campanha, F. G.; Dias, R. C. E., and Benassi, M. D. T. Discrimination of Coffee Species Using Kahweol and Cafestol: Effects of Roasting and of Defects. Coffee Sci. 2010, 5, 87–96. Accessed on 24 Feb 2021. http://www.sbicafe.ufv.br/handle/123456789/3921.
  • Kitzberger, C. S. G.; Scholz, M. B. D. S.; Pereira, L. F. P.; Vieira, L. G. E.; Sera, T.; Silva, J. B. G. D.; Benassi, M. D. T. Diterpenes in Green and Roasted Coffee of Coffea Arabica Cultivars Growing in the Same Edapho-Climatic Conditions. J. Food Compost. Anal. 2013, 30, 52–57. 10.1016/j.jfca.2013.01.007.
  • Yeretzian, C.; Jordan, A.; Badoud, R.; Lindinger, W. From the Green Bean to the Cup of Coffee: Investigating Coffee Roasting by on-Line Monitoring of Volatiles. Eur. Food Res. Technol. 2002, 214, 92–104. 10.1007/s00217-001-0424-7.
  • Bertrand, B.; Boulanger, R.; Dussert, S.; Ribeyre, F.; Berthiot, L.; Descroix, F.; Joët, T. Climatic Factors Directly Impact the Volatile Organic Compound Fingerprint in Green Arabica Coffee Bean as Well as Coffee Beverage Quality. Food Chem. 2012, 135, 2575–2583. 10.1016/j.foodchem.2012.06.060.
  • Cantergiani, E.; Brevard, H.; Krebs, Y.; Feria-Morales, A.; Amadò, R.; Yeretzian, C. Characterisation of the Aroma of Green Mexican Coffee and Identification of Mouldy/Earthy Defect. Eur. Food Res. Technol. 2001, 212, 648–657. 10.1007/s002170100305.
  • Lee, K. G.; Shibamoto, T. Analysis of Volatile Components Isolated from Hawaiian Green Coffee Beans (Coffea Arabica L.). Flavour Fragr. J. 2002, 17, 349–351. 10.1002/ffj.1067.
  • Santos, J. R.; Rodrigues, J. A. Characterization of Volatile Carbonyl Compounds in Defective Green Coffee Beans Using a Fan Assisted Extraction Process. Food Control. 2020, 108, 106879. 10.1016/j.foodcont.2019.106879.
  • Toci, A. T.; Farah, A. Volatile Compounds as Potential Defective Coffee Beans’ Markers. Food Chem. 2008, 108, 1133–1141. 10.1016/j.foodchem.2007.11.064.
  • Somporn, C.; Kamtuo, A.; Theerakulpisut, P.; Siriamornpun, S. Effects of Roasting Degree on Radical Scavenging Activity, Phenolics and Volatile Compounds of Arabica Coffee Beans (Coffea Arabica L. Cv. Catimor). Int. J. Food Sci. Technol. 2011, 46, 2287–2296. 10.1111/j.1365-2621.2011.02748.x.
  • Yang, N.; Liu, C.; Liu, X.; Degn, T. K.; Munchow, M.; Fisk, I. Determination of Volatile Marker Compounds of Common Coffee Roast Defects. Food Chem. 2016, 211, 206–214. 10.1016/j.foodchem.2016.04.124.
  • Caporaso, N.; Whitworth, M. B.; Cui, C.; Fisk, I. D. Variability of Single Bean Coffee Volatile Compounds of Arabica and Robusta Roasted Coffees Analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. 10.1016/j.foodres.2018.03.077.
  • Herrero, M.; Castro-Puyana, M.; Mendiola, J. A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. Trends Analyt Chem. 2013, 43, 67–83. 10.1016/j.trac.2012.12.008.
  • Cheong, M.; Tan, A. A.; Liu, S.; Curran, P.; Yu, B. Pressurised Liquid Extraction of Volatile Compounds in Coffee Bean. Talanta. 2013, 115, 300–307. 10.1016/j.talanta.2013.04.034.
  • Belandria, V.; Aparecida de Oliveira, P. M.; Chartier, A.; Rabi, J. A.; de Oliveira, A. L.; Bostyn, S. Pressurized-Fluid Extraction of Cafestol and Kahweol Diterpenes from Green Coffee. Innov. Food Sci. Emerg. Technol. 2016, 37, 145–152. 10.1016/j.ifset.2016.07.022.
  • Bermejo, D. V.; Luna, P.; Manic, M. S.; Najdanovic-Visak, V.; Reglero, G.; Fornari, T. Extraction of Caffeine from Natural Matter Using a Bio-Renewable Agrochemical Solvent. Food Bioprod. Process. 2013, 91, 303–309. 10.1016/j.fbp.2012.11.007.
  • Shang, Y. F.; Xu, J. L.; Lee, W. J.; Um, B. H. Antioxidative Polyphenolics Obtained from Spent Coffee Grounds by Pressurized Liquid Extraction. South Afr. J. Bot. 2017, 109, 75–80. 10.1016/j.sajb.2016.12.011.
  • Mariotti-Celis, M. S.; Martínez-Cifuentes, M.; Huamán-Castilla, N.; Vargas-González, M.; Pedreschi, F.; Pérez-Correa, J. R. The Antioxidant and Safety Properties of Spent Coffee Ground Extracts Impacted by the Combined Hot Pressurized Liquid Extraction–resin Purification Process. Molecules. 2018, 23(1), 21. 10.3390/molecules23010021.
  • Oliveira, N. A. D.; Cornelio-Santiago, H. P.; Fukumasu, H.; Oliveira, A. L. de Green Coffee Extracts Rich in Diterpenes – Process Optimization of Pressurized Liquid Extraction Using Ethanol as Solvent. J. Food Eng. 2018, 224, 148–155. 10.1016/j.jfoodeng.2017.12.021.
  • Pinto, J.; Nixdorf, S.; Jordan, M.; Lanças, F. A Novel Coffee Oil Extraction Procedure Employing Pressurized Solvents. Sci. Chromatograph. 2019, 10. 10.5935/sc.2019.006.
  • Fernández, D. P.; Goodwin, A. R. H.; Lemmon, E. W.; Levelt Sengers, J. M. H.; Williams, R. C. A Formulation for the Static Permittivity of Water and Steam at Temperatures from 238 K to 873 K at Pressures up to 1200 MPa, Including Derivatives and Debye–Hückel Coefficients. J. Phys. Chem. Ref. Data. 1997, 26, 1125–1166. 10.1063/1.555997.
  • Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical Water Extraction of Natural Products. Molecules. 2021, 26, 4004. 10.3390/molecules26134004 .
  • Yang, Y. Subcritical Water Chromatography: A Green Approach to High-Temperature Liquid Chromatography. J. Sep. Sci. 2007, 30, 1131–1140. 10.1002/jssc.200700008.
  • Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water: A Review. Trends Food Sci. Technol. 2020, 95, 183–195. 10.1016/j.tifs.2019.11.018.
  • Narita, Y.; Inouye, K. High Antioxidant Activity of Coffee Silverskin Extracts Obtained by the Treatment of Coffee Silverskin with Subcritical Water. Food Chem. 2012, 135, 943–949. 10.1016/j.foodchem.2012.05.078.
  • Getachew, A. T.; Chun, B. S. Influence of Hydrothermal Process on Bioactive Compounds Extraction from Green Coffee Bean. Innov. Food Sci. Emerg. Technol. 2016, 38, 24–31. 10.1016/j.ifset.2016.09.006.
  • Xu, H.; Wang, W.; Liu, X.; Yuan, F.; Gao, Y. Antioxidative Phenolics Obtained from Spent Coffee Grounds (Coffea Arabica L.) By Subcritical Water Extraction. Ind. Crop Prod. 2015, 76, 946–954. 10.1016/j.indcrop.2015.07.054.
  • Getachew, A. T.; Cho, Y. J.; Chun, B. S. Effect of Pretreatments on Isolation of Bioactive Polysaccharides from Spent Coffee Grounds Using Subcritical Water. Int. J. Biol. Macromol. 2018, 109, 711–719. 10.1016/j.ijbiomac.2017.12.120.
  • Mayanga-Torres, P. C.; Lachos-Perez, D.; Rezende, C. A.; Prado, J. M.; Ma, Z.; Tompsett, G. T.; Timko, M. T.; Forster-Carneiro, T. Valorization of Coffee Industry Residues by Subcritical Water Hydrolysis: Recovery of Sugars and Phenolic Compounds. J. Supercrit. Fluids. 2017, 120, 75–85. 10.1016/j.supflu.2016.10.015.
  • Herrero, M.; Mendiola, J. A.; Cifuentes, A.; Ibáñez, E. Supercritical Fluid Extraction: Recent Advances and Applications. J. Chromatogr. A. 2010, 1217, 2495–2511. 10.1016/j.chroma.2009.12.019.
  • Uwineza, P. A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules. 2020, 25, 3847. 10.3390/molecules25173847.
  • Xu, L.; Zhan, X.; Zeng, Z.; Chen, R.; Li, H.; Xie, T.; Wang, S. Recent Advances on Supercritical Fluid Extraction of Essential Oils. Afr J. Pharm. Pharmacol. 2011, 5, 1196–1211. 10.5897/AJPP11.228.
  • Machado, B. A. S.; Pereira, C. G.; Nunes, S. B.; Padilha, F. F.; Umsza-Guez, M. A. Supercritical Fluid Extraction Using CO2: Main Applications and Future Perspectives. Sep. Sci. Technol. 2013, 48, 2741–2760. 10.1080/01496395.2013.811422.
  • Sodeifian, G.; Ardestani, N. S.; Sajadian, S. A.; Moghadamian, K. Properties of Portulaca Oleracea Seed Oil via Supercritical Fluid Extraction: Experimental and Optimization. J. Supercrit. Fluids. 2018, 135, 34–44. 10.1016/j.supflu.2017.12.026.
  • Rombaut, N.; Savoire, R.; Thomasset, B.; Bélliard, T.; Castello, J.; van Hecke, É.; Lanoisellé, J.-L. Grape Seed Oil Extraction: Interest of Supercritical Fluid Extraction and Gas-Assisted Mechanical Extraction for Enhancing Polyphenol Co-Extraction in Oil. C R Chim. 2014, 17, 284–292. 10.1016/j.crci.2013.11.014.
  • Gustinelli, G.; Eliasson, L.; Svelander, C.; Andlid, T.; Lundin, L.; Ahrné, L.; Alminger, M. Supercritical Fluid Extraction of Berry Seeds: Chemical Composition and Antioxidant Activity. J. Food Qual. 2018, 2018, 6046074. 10.1155/2018/6046074.
  • Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules. 2018, 23, 23(10), 2625. 10.3390/molecules23102625.
  • Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. 10.1016/j.crfs.2021.03.011.
  • Castro-Vargas, H. I.; Rodríguez-Varela, L. I.; Ferreira, S. R. S.; Parada-Alfonso, F. Extraction of Phenolic Fraction from Guava Seeds (Psidium Guajava L.) Using Supercritical Carbon Dioxide and Co-Solvents. J. Supercrit. Fluids. 2010, 51, 319–324. 10.1016/j.supflu.2009.10.012.
  • Ghafoor, K.; AL-Juhaimi, F. Y.; Choi, Y. H. Supercritical Fluid Extraction of Phenolic Compounds and Antioxidants from Grape (Vitis Labrusca B.) Seeds. Plant Foods Hum. Nutr. 2012, 67, 407–414. 10.1007/s11130-012-0313-1.
  • Andrade, K. S.; Gonalvez, R. T.; Maraschin, M.; Ribeiro-Do-Valle, R. M.; Martínez, J.; Ferreira, S. R. S. Supercritical Fluid Extraction from Spent Coffee Grounds and Coffee Husks: Antioxidant Activity and Effect of Operational Variables on Extract Composition. Talanta. 2012, 88, 544–552. 10.1016/j.talanta.2011.11.031.
  • Khaw, K.-Y.; Parat, M.-O.; Shaw, P. N.; Falconer, J. R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules. 2017, 22. 10.3390/molecules22071186.
  • Ghafoor, K.; Park, J.; Choi, Y.-H. Optimization of Supercritical Fluid Extraction of Bioactive Compounds from Grape (Vitis Labrusca B.) Peel by Using Response Surface Methodology. Innov. Food Sci. Emerg. Technol. 2010, 11, 485–490. 10.1016/j.ifset.2010.01.013.
  • Campone, L.; Celano, R.; Lisa Piccinelli, A.; Pagano, I.; Carabetta, S.; Sanzo, R. D.; Russo, M.; Ibañez, E.; Cifuentes, A.; Rastrelli, L. Response Surface Methodology to Optimize Supercritical Carbon Dioxide/Co-Solvent Extraction of Brown Onion Skin by-Product as Source of Nutraceutical Compounds. Food Chem. 2018, 269, 495–502. 10.1016/j.foodchem.2018.07.042.
  • Shao, Q.; Huang, Y.; Zhou, A.; Guo, H.; Zhang, A.; Wang, Y. Application of Response Surface Methodology to Optimise Supercritical Carbon Dioxide Extraction of Volatile Compounds from Crocus Sativus. J. Sci. Food Agric. 2014, 94, 1430–1436. 10.1002/jsfa.6435.
  • Tramontin, D.; Cadena-Carrera, S. E.; Assreuy, J.; Nunes, R.; Santin, J. R.; Bolzan, A.; Quadri, M. Response Surface Methodology (RSM) to Evaluate Both the Extraction of Triterpenes and Sterols from Jackfruit Seed with Supercritical CO2 and the Biological Activity of the Extracts. J. Food Sci. Technol. 2021, 58, 3303–3313. 10.1007/s13197-020-04876-7.
  • de Azevedo, A. B. A.; Kieckbush, T. G.; Tashima, A. K.; Mohamed, R. S.; Mazzafera, P.; Melo,; Melo, S. A. B. V. D. S.A.B.V. de Extraction of Green Coffee Oil Using Supercritical Carbon Dioxide. J. Supercrit. Fluids. 2008, 44, 186–192. 10.1016/j.supflu.2007.11.004.
  • de Azevedo, A. B. A.; Mazzafera, P.; Mohamed, R. S.; Vieira De Melo, S. A. B.; Kieckbusch, T. G. Extraction of Caffeine, Chlorogenic Acids and Lipids from Green Coffee Beans Using Supercritical Carbon Dioxide and Co-Solvents. Brazilian J. Chem. Eng. 2008, 25, 543–552. 10.1590/s0104-66322008000300012.
  • de Melo, S. A. B. V.; Costa, G. M. N.; Viana, A. C. C., and Pessoa, F. L. P. Computation of Crossover Pressure for Synthesis of Supercritical Fluid Separation Systems. In 10th International Symposium on Process Systems Engineering;Eds., Part, A., de Brito Alves, R. M., Do Nascimento, C. A. O., and Biscaia, E.-C. B. T.-C. A.-C. E.; Elsevier: Amsterdam, Netherlands, 2009; Vol. 27, pp. 399–404.
  • Barbosa, H. M. A.; De Melo, M. M. R.; Coimbra, M. A.; Passos, C. P.; Silva, C. M. Optimization of the Supercritical Fluid Coextraction of Oil and Diterpenes from Spent Coffee Grounds Using Experimental Design and Response Surface Methodology. J. Supercrit. Fluids. 2014, 85, 165–172. 10.1016/j.supflu.2013.11.011.
  • Moeenfard, M.; Alves, A. New Trends in Coffee Diterpenes Research from Technological to Health Aspects. Food Res. Int. 2020, 134, 109207. 10.1016/j.foodres.2020.109207.
  • Araújo, J. M. A.; Sandi, D. Extraction of Coffee Diterpenes and Coffee Oil Using Supercritical Carbon Dioxide. Food Chem. 2007, 101, 1087–1094. 10.1016/j.foodchem.2006.03.008.
  • Tello, J.; Viguera, M.; Calvo, L. Extraction of Caffeine from Robusta Coffee (Coffea Canephora Var. Robusta) Husks Using Supercritical Carbon Dioxide. J. Supercrit. Fluids. 2011, 59, 53–60. 10.1016/j.supflu.2011.07.018.
  • Peker, H.; Srinivasan, M. P.; Smith, J. M.; McCoy, B. J. Caffeine Extraction Rates from Coffee Beans with Supercritical Carbon Dioxide. AIChE J. 1992, 38, 761–770. 10.1002/aic.690380513.
  • Lavilla, I., and Bendicho, C. Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds: From Plants to Drug Development; Herminia, Dominguez., and Maria, Gonzalez Munoz., ed.; Elsevier: Amsterdam, Netherlands, 2017; pp. 291–316.
  • Chemat, F.; Huma, Z.-E.; Khan, M. K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason Sonochem. 2011, 18, 813–835. 10.1016/j.ultsonch.2010.11.023.
  • Huamaní-Meléndez, V. J.; Darros-Barbosa, R. High Intensity Ultrasound Assisted Decaffeination Process of Coffee Beans in Aqueous Medium. J. Food Sci. Technol. 2018, 55, 4901–4908. 10.1007/s13197-018-3424-3.
  • Bianchin, M.; Lima, H. H. C. D.; Monteiro, A. M.; Benassi, M. D. T. Optimization of Ultrasonic-Assisted Extraction of Kahweol and Cafestol from Roasted Coffee Using Response Surface Methodology. LWT. 2020, 117, 108593. 10.1016/j.lwt.2019.108593.
  • Wen, L.; Zhang, Z.; Rai, D.; Sun, D.; Tiwari, B. K. Ultrasound‐assisted Extraction (UAE) of Bioactive Compounds from Coffee Silverskin: Impact on Phenolic Content, Antioxidant Activity, and Morphological Characteristics. J. Food Process. Eng. 2019, 42, e13191. 10.1111/jfpe.13191.
  • Chen, X.; Ding, J.; Ji, D.; He, S.; Ma, H. Optimization of Ultrasonic-Assisted Extraction Conditions for Bioactive Components from Coffee Leaves Using the Taguchi Design and Response Surface Methodology. J. Food Sci. 2020, 85, 1742–1751. 10.1111/1750-3841.15111.
  • Severini, C.; Derossi, A.; Fiore, A. G. Ultrasound-Assisted Extraction to Improve the Recovery of Phenols and Antioxidants from Spent Espresso Coffee Ground: A Study by Response Surface Methodology and Desirability Approach. Eur. Food Res. Technol. 2017, 243, 835–847. 10.1007/s00217-016-2797-7.
  • Al-Dhabi, N. A.; Ponmurugan, K.; Maran Jeganathan, P. Development and Validation of Ultrasound-Assisted Solid-Liquid Extraction of Phenolic Compounds from Waste Spent Coffee Grounds. Ultrason. Sonochem. 2017, 34, 206–213. 10.1016/j.ultsonch.2016.05.005.
  • Destandau, E.; Michel, T., and Elfakir, C. Microwave‐assisted Extraction. In Natural Product Extraction: Principles and Applications; Mauricio, A. Rostagno., and Juliana, M. Prado., ed.; The Royal Society of Chemistry: London, UK, 2013, Ch4, 113–156
  • Pavlović, M. D.; Buntić, A. V.; Šiler-Marinković, S. S.; Dimitrijević-Branković, S. I. Ethanol Influenced Fast Microwave-Assisted Extraction for Natural Antioxidants Obtaining from Spent Filter Coffee. Sep. Purif. Technol. 2013, 118, 503–510. 10.1016/j.seppur.2013.07.035.
  • Upadhyay, R.; Ramalakshmi, K.; Jagan Mohan Rao, L. Microwave-Assisted Extraction of Chlorogenic Acids from Green Coffee Beans. Food Chem. 2012, 130, 184–188. 10.1016/j.foodchem.2011.06.057.
  • Vinatoru, M.; Mason, T. J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC - Trends Anal. Chem. 2017, 97, 159–178. 10.1016/j.trac.2017.09.002.
  • Bagade, S. B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. 10.1080/10408347.2019.1686966.
  • Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F. W.-L. Microwave-Assisted Extractions of Active Ingredients from Plants. J. Chromatogr. A. 2011, 1218, 6213–6225. 10.1016/j.chroma.2011.07.040.
  • Wang, Z.; Ding, L.; Li, T.; Zhou, X.; Wang, L.; Zhang, H.; Liu, L.; Li, Y.; Liu, Z.; Wang, H., et al. Improved Solvent-Free Microwave Extraction of Essential Oil from Dried Cuminum Cyminum L. And Zanthoxylum Bungeanum Maxim. J. Chromatogr. A. 2006, 1102, 11–17. 10.1016/j.chroma.2005.10.032.
  • Yu, Y.; Chen, B.; Chen, Y.; Xie, M.; Duan, H.; Li, Y.; Duan, G. Nitrogen-Protected Microwave-Assisted Extraction of Ascorbic Acid from Fruit and Vegetables. J. Sep. Sci. 2009, 32, 4227–4233. 10.1002/jssc.200900487.
  • Chemat, F.; Lucchesi, M. E.; Smadja, J.; Favretto, L.; Colnaghi, G.; Visinoni, F. Microwave Accelerated Steam Distillation of Essential Oil from Lavender: A Rapid, Clean and Environmentally Friendly Approach. Anal. Chim. Acta. 2006, 555, 157–160. 10.1016/j.aca.2005.08.071.
  • Golmakani, M.-T.; Rezaei, K. Comparison of Microwave-Assisted Hydrodistillation Withthe Traditional Hydrodistillation Method in the Extractionof Essential Oils from Thymus Vulgaris L. Food Chem. 2008, 109, 925–930. 10.1016/j.foodchem.2007.12.084.
  • Chen, Y.; Gu, X.; Huang, S.; Li, J.; Wang, X.; Tang, J. Optimization of Ultrasonic/Microwave Assisted Extraction (UMAE) of Polysaccharides from Inonotus Obliquus and Evaluation of Its Anti-Tumor Activities. Int. J. Biol. Macromol. 2010, 46, 429–435. 10.1016/j.ijbiomac.2010.02.003.
  • González-Nuñez, L. N.; Cañizares-Macías, M. P. Focused Microwaves-Assisted Extraction of Theobromine and Caffeine from Cacao. Food Chem. 2011, 129, 1819–1824. 10.1016/j.foodchem.2011.05.118.
  • Wen, L.; Zhang, Z.; Sun, D.-W.; Sivagnanam, S. P.; Tiwari, B. K. Combination of Emerging Technologies for the Extraction of Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. 10.1080/10408398.2019.1602823.
  • Bouxin, F. P.; Clark, J. H.; Fan, J.; Budarin, V. Combining Steam Distillation with Microwave-Assisted Pyrolysis to Maximise Direct Production of Levoglucosenone from Agricultural Wastes. Green Chem. 2019, 21, 1282–1291. 10.1039/C8GC02994F.
  • Ikram, R.; Low, K. H.; Hashim, N. B.; Ahmad, W.; Nasharuddin, M. N. A. Characterization of Sulfur-Compounds as Chemotaxonomic Markers in the Essential Oils of Allium Species by Solvent-Free Microwave Extraction and Gas Chromatography–Mass Spectrometry. Anal. Lett. 2019, 52, 563–574. 10.1080/00032719.2018.1479411.
  • López-Hortas, L.; Gely, M.; Falqué, E.; Domínguez, H.; Torres, M. D. Alternative Environmental Friendly Process for Dehydration of Edible Undaria Pinnatifida Brown Seaweed by Microwave Hydrodiffusion and Gravity. J. Food Eng. 2019, 261, 15–25. 10.1016/j.jfoodeng.2019.05.001.
  • Michel, T.; Destandau, E.; Elfakir, C. Evaluation of a Simple and Promising Method for Extraction of Antioxidants from Sea Buckthorn (Hippophaë Rhamnoides L.) Berries: Pressurised Solvent-Free Microwave Assisted Extraction. Food Chem. 2011, 126, 1380–1386. 10.1016/j.foodchem.2010.09.112.
  • Zhang, H.-F.; Yang, X.-H.; Wang, Y. Microwave Assisted Extraction of Secondary Metabolites from Plants: Current Status and Future Directions. Trends Food Sci. Technol. 2011, 22, 672–688. 10.1016/j.tifs.2011.07.003.
  • Akhtar, I.; Javad, S.; Yousaf, Z.; Iqbal, S.; Jabeen, K. Review: Microwave Assisted Extraction of Phytochemicals an Efficient and Modern Approach for Botanicals and Pharmaceuticals. Pak. J. Pharm. Sci. 2019, 32, 223–230.
  • Yadav, N.; Sharma, S.; Joys, J. S.; Kumar, S. Microwave Assisted Extraction of Bioactive Compounds: A Brief Review. J. Indian Chem. Soc. 2020, 97, 1751–1756.
  • Panja, P. Green Extraction Methods of Food Polyphenols from Vegetable Materials. Curr. Opin. Food Sci. 2018, 23, 173–182. 10.1016/j.cofs.2017.11.012.
  • Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. 10.1007/s11947-011-0573-z.
  • Santos, P.; Aguiar, A. C.; Barbero, G. F.; Rezende, C. A.; Martínez, J. Supercritical Carbon Dioxide Extraction of Capsaicinoids from Malagueta Pepper (Capsicum Frutescens L.) Assisted by Ultrasound. Ultrason. Sonochem. 2015, 22, 78–88. 10.1016/j.ultsonch.2014.05.001.
  • Kumar, M.; Dahuja, A.; Tiwari, S.; Punia, S.; Tak, Y.; Amarowicz, R.; Bhoite, A. G.; Singh, S.; Joshi, S.; Panesar, P. S., et al. Recent Trends in Extraction of Plant Bioactives Using Green Technologies: A Review. Food Chem. 2021, 353, 129431. 10.1016/j.foodchem.2021.129431.
  • Guglielmetti, A.; D’Ignoti, V.; Ghirardello, D.; Belviso, S.; Zeppa, G. Optimisation of Ultrasound and Microwave-Assisted Extraction of Caffeoylquinic Acids and Caffeine from Coffee Silverskin Using Response Surface Methodology. Ital. J. Food Sci. 2017, 29, 409–423. 10.14674/IJFS-727.
  • Liu, H.; Shao, J.; Li, Q.; Li, Y.; Yan, H. M.; He, L. Determination of Trigonelline, Nicotinic Acid, and Caffeine in Yunnan Arabica Coffee by Microwave-Assisted Extraction and HPLC with Two Columns in Series. J. AOAC Int. 2012, 95, 1138–1141. 10.5740/jaoacint.11-275.
  • Pettinato, M.; Casazza, A. A.; Ferrari, P. F.; Palombo, D.; Perego, P. Eco-Sustainable Recovery of Antioxidants from Spent Coffee Grounds by Microwave-Assisted Extraction: Process Optimization, Kinetic Modeling and Biological Validation. Food Bioprod. Process. 2019, 114, 31–42. 10.1016/j.fbp.2018.11.004.
  • Ranic, M.; Nikolic, M.; Pavlovic, M.; Buntic, A.; Siler-Marinkovic, S.; Dimitrijevic-Brankovic, S. Optimization of Microwave-Assisted Extraction of Natural Antioxidants from Spent Espresso Coffee Grounds by Response Surface Methodology. J. Clean. Prod. 2014, 80, 69–79. 10.1016/j.jclepro.2014.05.060.
  • Benvenutti, L.; Zielinski, A. A. F.; Ferreira, S. R. S. Which Is the Best Food Emerging Solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. 10.1016/j.tifs.2019.06.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.