1,262
Views
8
CrossRef citations to date
0
Altmetric
Review

Transition Metal Dichalcogenide-based Membranes for Water Desalination, Gas Separation, and Energy Storage

, ORCID Icon, , , , , ORCID Icon, ORCID Icon & show all
Pages 43-57 | Received 24 Jul 2021, Accepted 22 Jan 2022, Published online: 20 Feb 2022

References

  • Ali, A.; Pothu, R.; Siyal, S. H.; Phulpoto, S.; Sajjad, M.; Thebo, K. H. Graphene-based Membranes for CO2 Separation. Mater.Sci. Energy Technol. 2019, 2, 83–88. DOI: 10.1016/j.mset.2018.11.002.
  • Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M., Jiang, Z., et al. Antifouling Membranes for Sustainable Water Purification: Strategies and Mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924. DOI: 10.1039/C5CS00579E.
  • Joshi, R. K.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Nishina, Y. Graphene Oxide: The New Membrane Material. Appl. Mater. Today. 2015, 1, 1–12. DOI: 10.1016/j.apmt.2015.06.002.
  • Li, W.; Zhang, Y.; Li, Q.; Zhang, G. Metal−organic Framework Composite Membranes: Synthesis and Separation Applications. Chem. Eng. Sci. 2015, 135, 232–257. DOI: 10.1016/j.ces.2015.04.011.
  • Zhao, Y.; Xie, Y.; Liu, Z.; Wang, X.; Chai, Y.; Yan, F. Two-Dimensional Material Membranes: An Emerging Platform for Controllable Mass Transport Applications. Small. 2014, 10, 4521–4542. DOI: 10.1002/smll.201401549.
  • Sharif, S.; Ahmad, K. S.; Rehman, F.; Bhatti, Z.; Thebo, K. H. Two-Dimensional Graphene Oxide Based Membranes for Ionic and Molecular Separation: Current Status and Challenges. J. Environ. Chem. Eng. 2021, 9, 105605. DOI: 10.1016/j.jece.2021.105605.
  • Mulder, M.;. Basic Principles of Membrane Technology; Springer Netherlands, 1996, pp 1–520. DOI: 10.1007/978-94-009-1766-8.
  • Das, R.; Ali, M. E.; Hamid, S. B. A.; Ramakrishna, S.; Chowdhury, Z. Z. Carbon Nanotube Membranes for Water Purification: A Bright Future in Water Desalination. Desalination. 2014, 336, 97–109. DOI: 10.1016/j.desal.2013.12.026.
  • Qian, X.; Chen, L.; Yin, L.; Liu, Z.; Pei, S.; Li, F.; Hou, G.; Chen, S.; Song, L.; Thebo, K. H., et al. CdPS3 Nanosheets-based Membrane with High Proton Conductivity Enabled by Cd Vacancies. Science. 2020, 370(6516), 596–600. DOI: 10.1126/science.abb9704.
  • Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K. H. CVD Grown Defect Rich-MWCNTs with Anchored CoFe Alloy Nanoparticles for OER Activity. Mater. Lett. 2020, 259, 126831. DOI: 10.1016/j.matlet.2019.126831.
  • Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K. H. MWCNTs and Carbon Onions Grown by CVD Method on Nickel-Cobalt Alloy Nanocomposites Prepared via Novel Alcogel Electrolysis Technique and Its Oxygen Evolution Reaction Application. Mater. Res. Express. 2019, 6, 105627. DOI: 10.1088/2053-1591/ab41d4.
  • Janjhi, F. A.; Chandio, I.; Memon, A. A.; Ahmed, Z.; Thebo, K. H.; Pirzado, A. A. A.; Hakro, A. A.; Iqbal, M. Functionalized Graphene Oxide Based Membranes for Ultrafast Molecular Separation. Sep. Purif. Technol. 2020, 117969. DOI: 10.1016/j.seppur.2020.117969.
  • Jaffri, S. B.; Ahmad, K. S.; Thebo, K. H.; Rehman, F. Recent Developments in Carbon Nanotubes-Based Perovskite Solar Cells with Boosted Efficiency and Stability. Z. Phys. Chem (NF). 2021, 1729. DOI: 10.1515/zpch-2020-1729.
  • Zhang, Q.; Qian, X.; Thebo, K. H.; Cheng, H.-M.; Ren, W. Controlling Reduction Degree of Graphene Oxide Membranes for Improved Water Permeance. Sci. Bulletin. 2018, 63, 788–794. DOI: 10.1016/j.scib.2018.05.015.
  • Thebo, K. H.; Qian, X.; Wei, Q.; Zhang, Q.; Cheng, H.-M.; Ren, W. Reduced Graphene Oxide/metal Oxide Nanoparticles Composite Membranes for Highly Efficient Molecular Separation. J. Mater. Sci. Technol. 2018, 34, 1481–1486. DOI: 10.1016/j.jmst.2018.05.008.
  • Chandio, I.; Janjhi, F. A.; Memon, A. A.; Ahmed. Memon, S.; Ali, Z.; Thebo, K. H.; Pirzado, A. A. A.; Hakro, A. A.; Khan, W. S. Ultrafast Ionic and Molecular Sieving through Graphene Oxide Based Composite Membranes. Desalination. 2021, 500, 114848. DOI: 10.1016/j.desal.2020.114848.
  • Maqbool, I.; Rehman, F.; Soomro, F.; Bhatti, Z.; Ali, U.; Jatoi, A. H.; Lal, B.; Iqbal, M.; Phulpoto, S.; Ali, A., et al. Graphene-based Materials for Fighting Coronavirus Disease 2019: Challenges and Opportunities. ChemBioEng Rev. 2021, 8, 67–77. DOI: 10.1002/cben.202000039.
  • Ahmed, Z.; Rehman, F.; Ali, U.; Ali, A.; Iqbal, M.; Thebo, K. H. Recent Advances in MXene-based Separation Membranes. ChemBioEng Rev. 2021, 8, 110–120. DOI: 10.1002/cben.202000026.
  • Nahyoon, N. A.; Liu, L.; Rabe, K.; Thebo, K. H.; Yuan, L.; Sun, J.; Yang, F. Significant Photocatalytic Degradation and Electricity Generation in the Photocatalytic Fuel Cell (PFC) Using Novel Anodic Nanocomposite of Fe, Graphene Oxide, and Titanium Phosphate. Electrochim.Acta. 2018, 271, 41–48. DOI: 10.1016/j.electacta.2018.03.109.
  • Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite Membranes - a Review and Comparison with MOFs. Chem. Soc. Rev. 2015, 44, 7128–7154. DOI: 10.1039/C5CS00292C.
  • Zhang, P.; Chen, S.; Zhu, C.; Hou, L.; Xian, W.; Zuo, X.; Zhang, Q.; Zhang, L.; Ma, S. Covalent Organic Framework Nanofluidic Membrane as a Platform for Highly Sensitive Bionic Thermosensation. Nat. Commun. 2021, 12, 1844. DOI: 10.1038/s41467-021-22141-z.
  • Fan, H.; Peng, M.; Strauss, I.; Mundstock, A.; Meng, H.; Caro, J. MOF-in-COF Molecular Sieving Membrane for Selective Hydrogen Separation. Nat. Commun. 2021, 12, 38. DOI: 10.1038/s41467-020-20298-7.
  • Thebo, K. H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H. M.; Ren, W. Highly Stable Graphene-oxide-based Membranes with Superior Permeability. Nat. Commun. 2018, 9, 1486. DOI: 10.1038/s41467-018-03919-0.
  • Lei, W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron Nitride Colloidal Solutions, Ultralight Aerogels and Freestanding Membranes through One-step Exfoliation and Functionalization. Nat. Commun. 2015, 6, 8849. DOI: 10.1038/ncomms9849.
  • Li, X.; Wang, N.; Huang, Z.; Zhang, L.; Xie, Y.-B.; An, Q.-F. A Vertically Channeled Lamellar Membrane for Molecular Sieving of Water from Organic Solvents. J. Mater. Chem. A. 2018, 6, 18095–102. 18095–18102. DOI: 10.1039/C8TA04095H.
  • Kim, S.; Lin, X.; Ou, R.; Liu, H.; Zhang, X.; Simon, P. G.; Easton, D. C.; Wang, H. Highly Crosslinked, Chlorine Tolerant Polymer Network Entwined Graphene Oxide Membrane for Water Desalination. J. Mater. Chem. A. 2017, 5, 1533–1540. DOI: 10.1039/C6TA07350F.
  • Hussain, S.; Li, Y.; Thebo, K. H.; Ali, Z.; Owais, M.; Hussain, S. Effect of Iron Oxide Co-doping on Structural, Thermal, and Electrochemical Properties of Samarium Doped Ceria Solid Electrolyte. Mater. Chem. Phys. 2021, 267, 124576. DOI: 10.1016/j.matchemphys.2021.124576.
  • Iqbal, M.; Thebo, A. A.; Jatoi, W. B.; Tabassum, M. T.; Rehman, M. U.; Thebo, K. H. Facile Synthesis of Cr Doped Hierarchical ZnO Nano-structures for Enhanced Photovoltaic Performance. Inorg. Chem. Commun. 2020, 116, 107902. DOI: 10.1016/j.inoche.2020.107902.
  • Iqbal, M.; Ali, A.; Nahyoon, N. A.; Majeed, A.; Pothu, R.; Phulpoto, S.; Thebo, K. H. Photocatalytic Degradation of Organic Pollutant with Nanosized Cadmium Sulfide. Mater. Sci. For Energy Techno. 2019, 2, 41–45. DOI: 10.1016/j.mset.2018.09.002.
  • Rehman, F.; Thebo, K. H.; Aamir, M.; Akhtar, J. Chapter 8 - Nanomembranes for Water Treatment. In Nanotechnology in the Beverage Industry; Amrane, A., Rajendran, S., Nguyen, T. A., Assadi, A. A., Sharoba, A. M., Eds.; Elsevier, 2020, pp 207–240. DOi:10.1016/B978-0-12-819941-1.00008-0.
  • Lin, Z.-Q.; Xie, J.; Zhang, B.-W.; Li, J.-W.; Weng, J.; Song, R.-B.; Huang, X.; Zhang, H.; Li, H.; Xu, Z. J., et al. Solution-processed Nitrogen-rich Graphene-like Holey Conjugated Polymer for Efficient Lithium Ion Storage. Nano Energy. 2017, 41, 117–127. DOI: 10.1016/j.nanoen.2017.08.038.
  • Hussain, S.; Li, Y.; Mustehsin, A.; Ali, A.; Thebo, K. H.; Ali, Z.; Hussain, S. Synthesis and Characterization of ZnO/samarium-doped Ceria Nanocomposites for Solid Oxide Fuel Cell Applications. Ionics. 2021, 27, 4849–4857. DOI: 10.1007/s11581-021-04246-z.
  • Khan, J.; Ullah, H. S.; Bahadar, A.; Bhatti, Z.; Soomro, F.; Memon, F. H.; Iqbal, M.; Rehman, F.; Thebo, K. H. High Yield Synthesis of Transition Metal Fluorides (Cof2, NiF2, and NH4MnF3) Nanoparticles with Excellent Electrochemical Performance. Inorg, Chem. Commun. 2021, 130, 108751. DOI: 10.1016/j.inoche.2021.108751.
  • Ang, E. H.; Chew, J. W. Two-Dimensional Transition-Metal Dichalcogenide-Based Membrane for Ultrafast Solvent Permeation. Chem. Mater. 2019, 31(24), 10002–10007. DOI: 10.1021/acs.chemmater.9b01873.
  • Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano. 2015, 9, 9451–9469. DOI: 10.1021/acsnano.5b05040.
  • Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118(13), 6091–6133. DOI: 10.1021/acs.chemrev.7b00536.
  • Huo, C.; Yan, Z.; Song, X.; Zeng, H. 2D Materials via Liquid Exfoliation: A Review on Fabrication and Applications. Sci.Bulletin. 2015, 60, 1994–2008. DOI: 10.1007/s11434-015-0936-3.
  • Chhowalla, M.; Liu, Z.; Zhang, H. Two-dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. DOI: 10.1039/C5CS90037A.
  • Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The Chemistry of Two-dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263–275. DOI: 10.1038/nchem.1589.
  • Zhang, X.; Lai, Z.; Tan, C.; Zhang, H. Solution-processed Two-dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. Angew. Chem. Int. 2016, 55, 8816–8838. DOI: 10.1002/anie.201509933.
  • Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and Chemistry of Elemental 2D Materials. Nat. Rev. Chem. 2017, 1, 0014. DOI: 10.1038/s41570-016-0014.
  • Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional Flexible Nanoelectronics. Nat. Commun. 2014, 5, 5678. DOI: 10.1038/ncomms6678.
  • Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. DOI: 10.1038/natrevmats.2017.33.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A Roadmap for Graphene. Nature. 2012, 490, 192–200. DOI: 10.1038/nature11458.
  • Qiao, X.-Q.; Zhang, Z.-W.; Tian, F.-Y.; Hou, D.-F.; Tian, Z.-F.; Li, D.-S.; Zhang, Q. Enhanced Catalytic Reduction of p-Nitrophenol on Ultrathin MoS2 Nanosheets Decorated with Noble Metal Nanoparticles. Cryst. Growth Des. 2017, 17, 3538–3547. DOI: 10.1021/acs.cgd.7b00474.
  • Nie, L.; Zhang, Q. Recent Progress in Crystalline Metal Chalcogenides as Efficient Photocatalysts for Organic Pollutant Degradation. Inorg. Chem. Fron. 2017, 4, 1953–1962. DOI: 10.1039/C7QI00651A.
  • Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H., et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. DOI: 10.1021/acs.chemrev.6b00558.
  • Cheng, P.; Chen, Y.; Gu, Y.-H.; Yan, X.; Lang, W.-Z. Hybrid 2D WS2/GO Nanofiltration Membranes for Finely Molecular Sieving. J. Membr. Sci. 2019, 591, 117308. DOI: 10.1016/j.memsci.2019.117308.
  • Rodríguez-Hernández, J., and Bormashenko, E. Methodologies Involved in Manufacturing Self-assembled Breath-figures Patterns: Drop-casting and Spin- and dip-Coating – Characterization of Microporous Surfaces. In Breath Figures. Cham: Springer 111–148 , 2020. DOI:10.1007/978-3-030-51136-4_4
  • Cai, X.; Luo, Y.; Liu, B.; Cheng, H.-M. Preparation of 2D Material Dispersions and Their Applications. Chem. Soc. Rev. 2018, 47, 6224–6266. DOI: 10.1039/C8CS00254A.
  • Ries, L.; Petit, E.; Michel, T.; Diogo, C. C.; Gervais, C.; Salameh, C.; Bechelany, M.; Balme, S.; Miele, P.; Onofrio, N., et al. Enhanced Sieving from Exfoliated MoS2 Membranes via Covalent Functionalization. Nat. Mater. 2019, 18, 1112–1117. DOI: 10.1038/s41563-019-0464-7.
  • Krueger, M.; Berg, S.; Stone, D. A.; Strelcov, E.; Dikin, D. A.; Kim, J.; Cote, L. J.; Huang, J.; Kolmakov, A. Drop-casted Self-assembling Graphene Oxide Membranes for Scanning Electron Microscopy on Wet and Dense Gaseous Samples. ACS Nano. 2011, 5, 10047–10054. DOI: 10.1021/nn204287g.
  • Sun, P.; Zhu, M.; Wang, K.; Zhong, M.; Wei, J.; Wu, D.; Xu, Z.; Zhu, H. Selective Ion Penetration of Graphene Oxide Membranes. ACS Nano. 2013, 7, 428–437. DOI: 10.1021/nn304471w.
  • Luo, J.; Cote, L. J.; Tung, V. C.; Tan, A. T. L.; Goins, P. E.; Wu, J.; Huang, J. Graphene Oxide Nanocolloids. J. Am. Chem. Soc. 2010, 132, 17667–17669. DOI: 10.1021/ja1078943.
  • Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature. 1997, 389, 827–829. DOI: 10.1038/39827.
  • Tsou, C.-H.; An, Q.-F.; Lo, S.-C.; De Guzman, M.; Hung, W.-S.; Hu, -C.-C.; Lee, K.-R.; Lai, J.-Y. Effect of Microstructure of Graphene Oxide Fabricated through Different Self-assembly Techniques on 1-butanol Dehydration. J. Membr. Sci. 2015, 477, 93–100. DOI: 10.1016/j.memsci.2014.12.039.
  • Shen, Y.; Wang, H.; Zhang, X.; Zhang, Y. MoS2 Nanosheets Functionalized Composite Mixed Matrix Membrane for Enhanced CO2 Capture via Surface Drop-coating Method. ACS App. Mater. Interfaces. 2016, 8, 23371–23378. DOI: 10.1021/acsami.6b07153.
  • Vetrivel, S.; Saraswathi, M. S. A.; Rana, D.; Nagendran, A. Fabrication of Cellulose Acetate Nanocomposite Membranes Using 2D Layered Nanomaterials for Macromolecular Separation. Int. J. Biol. Macromol. 2018, 107, 1607–1612. DOI: 10.1016/j.ijbiomac.2017.10.027.
  • Li, J.; Zhang, Y.; Zhang, S.; Huang, X. Sulfonated polyimide/s-MoS2 Composite Membrane with High Proton Selectivity and Good Stabil’ity for Vanadium Redox Flow Battery. J. Membr Sci. 2015, 490, 179–189. DOI: 10.1016/j.memsci.2015.04.053.
  • Lin, J.; Zhang, R.; Ye, W.; Jullok, N.; Sotto, A.; Van Der. Bruggen, B. Nano-WS2 Embedded PES Membrane with Improved Fouling and Permselectivity. J. Colloid Interfaces Sci. 2013, 396, 120–128. DOI: 10.1016/j.jcis.2013.01.028.
  • Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature. 2007, 448, 457–460. DOI: 10.1038/nature06016.
  • Sun, L.; Huang, H.; Peng, X. Laminar MoS2 Membranes for Molecule Separation. Chem. Commun. 2013, 49, 10718–10720. DOI: 10.1039/C3CC46136J.
  • Sun, L.; Ying, Y.; Huang, H.; Song, Z.; Mao, Y.; Xu, Z.; Peng, X. Ultrafast Molecule Separation through Layered WS2 Nanosheet Membranes. ACS Nano. 2014, 8, 6304–6311. DOI: 10.1021/nn501786m.
  • Kim, H. W.; Yoon, H. W.; Yoon, S.-M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S., et al. Selective Gas Transport through Few-layered Graphene and Graphene Oxide Membranes. Science. 2013, 342, 91–95. DOI: 10.1126/science.1236098.
  • Berean, K. J.; Ou, J. Z.; Daeneke, T.; Carey, B. J.; Nguyen, E. P.; Wang, Y.; Russo, S. P.; Kaner, R. B.; Kalantar-zadeh, K. 2D MoS2 PDMS Nanocomposites for NO2 Separation. Small. 2015, 11, 5035–5040. DOI: 10.1002/smll.201501129.
  • Sun, M.; Li, J. Graphene Oxide Membranes: Functional Structures, Preparation and Environmental Applications. Nano Today. 2018, 20, 121–137. DOI: 10.1016/j.nantod.2018.04.007.
  • Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the Right Stuff: The Trade-off between Membrane Permeability and Selectivity. Science. 2017, 356, eaab0530. DOI: 10.1126/science.aab0530.
  • Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination. 2015, 356, 226–254. DOI: 10.1016/j.desal.2014.10.043.
  • Dervin, S.; Dionysiou, D. D.; Pillai, S. C. 2D Nanostructures for Water Purification: Graphene and Beyond. Nanoscale. 2016, 8, 15115–15131. DOI: 10.1039/C6NR04508A.
  • Goh, K.; Karahan, H. E.; Wei, L.; Bae, T.-H.; Fane, A. G.; Wang, R.; Chen, Y. Carbon Nanomaterials for Advancing Separation Membranes: A Strategic Perspective. Carbon. 2016, 109, 694–710. DOI: 10.1016/j.carbon.2016.08.077.
  • Marchetti, P.; Jimenez. Solomon, M. F.; Szekely, G.; Livingston, A. G. Molecular Separation with Organic Solvent Nanofiltration: A Critical Review. Chem. Rev. 2014, 114, 10735–10806. DOI: 10.1021/cr500006j.
  • Heiranian, M.; Farimani, A. B.; Aluru, N. R. Water Desalination with a Single-layer MoS2 Nanopore. Nat. Commun. 2015, 6, 8616. DOI: 10.1038/ncomms9616.
  • Kou, J.; Yao, J.; Wu, L.; Zhou, X.; Lu, H.; Wu, F.; Fan, J. Nanoporous Two-dimensional MoS2 Membranes for Fast Saline Solution Purification. Phys. Chem. Chem. Phys. 2016, 18, 22210–22216. DOI: 10.1039/C6CP01967F.
  • Ye, R.; Song, W.; Qi, X.; Gu, Z.; Zhong, D. Membrane Insertion of MoS2 Nanosheets: Fresh Vs. Aged. Front. Chem. 2021, 9, 706917. DOI: 10.3389/fchem.2021.706917.
  • Abal, J. P. K.; Barbosa, M. C. Molecular Fluid Flow in MoS2 Nanoporous Membranes and Hydrodynamics Interactions. J. Chem. Phys. 2021, 154, 134506. DOI: 10.1063/5.0039963.
  • Peter Ozaveshe Oviroh, P. O.; Jen, T.-C.; Ren, J.; Mohlala, L. M.; Warmbier, R.; Karimzadeh, S. Nanoporous MoS2 Membrane for Water Desalination: A Molecular Dynamics Study. Langmuir. 2021, 37, 7127–7137. DOI: 10.1021/acs.langmuir.1c00708.
  • Cao, Z.; Liu, V.; Barati. Farimani, A. Why Is Single-layer MoS2 a More Energy Efficient Membrane for Water Desalination?. ACS Energy Lett. 2020, 5, 2217–2222. DOI: 10.1021/acsenergylett.0c00923.
  • Feng, J.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M., Nandigana, V., Aluru, R.N., Kis., A., Radenovic., A., Single-layer MoS2 Nanopores as Nanopower Generators. Nature. 2016, 536, 197–199. DOI: 10.1038/nature18593.
  • Liu, K.; Feng, J.; Kis, A.; Radenovic, A. Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Translocation. ACS Nano. 2014, 8, 2504–2511. DOI: 10.1021/nn406102h.
  • Feng, J.; Liu, K.; Graf, M.; Lihter, M.; Bulushev, R. D.; Dumcenco, D.; Alexander, D. T. L.; Krasnozhon, D.; Vuletic, T.; Kis, A., et al. Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. Nano Lett. 2015, 15, 3431–3438. DOI: 10.1021/acs.nanolett.5b00768.
  • Sapkota, B.; Liang, W.; VahidMohammadi, A.; Karnik, R.; Noy, A.; Wanunu, M. High Permeability Sub-nanometre Sieve Composite MoS2 Membranes. Nat. Commun. 2020, 11, 2747. DOI: 10.1038/s41467-020-16577-y.
  • Li, M.-N.; Chen, X.-J.; Wan, Z.-H.; Wang, S.-G.; Sun, X.-F. Forward Osmosis Membranes for High-efficiency Desalination with Nano-MoS2 Composite Substrates. Chemosphere. 2021, 278, 130341. DOI: 10.1016/j.chemosphere.2021.130341.
  • Liu, Y.; Zhao, Y.; Zhang, X.; Huang, X.; Liao, W.; Zhao, Y. MoS2-based Membranes in Water Treatment and Purification. J. Chem. Eng. 2021, 422, 130082. DOI: 10.1016/j.cej.2021.130082.
  • Arshad, F.; Aubry, C.; Ravaux, F.; Zou, L. 2D MoS2 Nanoplatelets for Fouling Resistant Membrane Surface. J. Colloid Interface Sci. 2021, 590, 415–423. DOI: 10.1016/j.jcis.2021.01.085.
  • Zhao, X.; Li, J.; Mu, S.; He, W.; Zhang, D.; Wu, X.; Wang, C.; Zeng, H. Efficient Removal of Mercury Ions with MoS2-nanosheet-decorated PVDF Composite Adsorption Membrane. Environ. Pollut. 2021, 268, 115705. DOI: 10.1016/j.envpol.2020.115705.
  • Zheng, S.; Huang, M.; Sun, S.; Zhao, H.; Meng, L.; Mu, T.; Song, J.; Jiang, N. Synergistic Effect of MIL-88A/g-C3N4 and MoS2 to Construct a Self-cleaning Multifunctional Electrospun Membrane. J. Chem. Eng. 2021, 421, 129621. DOI: 10.1016/j.cej.2021.129621.
  • Sreeramareddygari, M.; Mannekote. Shivanna, J.; Somasundrum, M.; Soontarapa, K.; Surareungchai, W. Polythiocyanuric Acid-functionalized MoS2 Nanosheet-based High Flux Membranes for Removal of Toxic Heavy Metal Ions and Congo Red. J. Chem. Eng. 2021, 425, 130592. DOI: 10.1016/j.cej.2021.130592.
  • Yang, S.; Tian, H.; Hill, M. R.; Zhang, K. Effect and Regulation Mechanism of Oxidation Degrees on the O–MoS2 Structure and Separation Performance of Nanofiltration Membrane. J. Membr. Sci. 2021, 635, 119468. DOI: 10.1016/j.memsci.2021.119468.
  • Deng, M.; Kwac, K.; Li, M.; Jung, Y.; Park, H. G. Stability, Molecular Sieving, and Ion Diffusion Selectivity of a Lamellar Membrane from Two-dimensional Molybdenum Disulfide. Nano Lett. 2017, 17, 2342–2348. DOI: 10.1021/acs.nanolett.6b05238.
  • Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded Permeation of Water through Helium-leak–tight Graphene-based Membranes. Science. 2012, 335, 442–444. DOI: 10.1126/science.1211694.
  • Wang, Z.; Tu, Q.; Zheng, S.; Urban, J. J.; Li, S.; Mi, B. Understanding the Aqueous Stability and Filtration Capability of MoS2 Membranes. Nano Lett. 2017, 17, 7289–7298. DOI: 10.1021/acs.nanolett.7b02804.
  • Wang, Z.; Mi, B. Environmental Applications of 2D Molybdenum Disulfide (Mos2) Nanosheets. Environ. Sci. Techn. 2017, 51, 8229–8244. DOI: 10.1021/acs.est.7b01466.
  • Ai, K.; Ruan, C.; Shen, M.; Lu, L. MoS2 Nanosheets with Widened Interlayer Spacing for High-efficiency Removal of Mercury in Aquatic Systems. Adv. Funct. Mater. 2016, 26, 5542–5549. DOI: 10.1002/adfm.201601338.
  • Wang, S.; Sun, H.; Ang, H. M.; Tade, M. O. Adsorptive Remediation of Environmental Pollutants Using Novel Graphene-based Nanomaterials. J. Chem. Eng. 2013, 226, 336–347. DOI: 10.1016/j.cej.2013.04.070.
  • Hu, W.; Cui, X.; Xiang, L.; Gong, L.; Zhang, L.; Gao, M.; Wang, W.; Zhang, J.; Liu, F.; Yan, B., et al. Tannic Acid Modified MoS2 Nanosheet Membranes with Superior Water Flux and Ion/dye Rejection. J. Colloid Interface Sci. 2020, 560, 177–185. DOI: 10.1016/j.jcis.2019.10.068.
  • Han, -J.-J.; Zhang, Q.-Y.; Huang, M.-Y.; Chen, Y.; Yan, X.; Lang, W.-Z. Two-dimensional WS2 Membranes Constructed on Different Substrates for Efficient Dye Desalination. Desalination. 2020, 480, 114380. DOI: 10.1016/j.desal.2020.114380.
  • Lere. Keshebo, D.; Hu, -C.-C.; Kassa, S. T.; Hung, W.-S.; Wang, F. C.; Huang, S.-H.; Lee, K.-R.; Lai, J. Y. Solvent-exfoliated 2D WS2/polyethersulfone Antifouling Mixed Matrix Ultrafiltration Membrane for Water Treatment. ACS Appl. Poly. Mater. 2020, 2, 5039–5047. DOI: 10.1021/acsapm.0c00871.
  • Tham, H. M.; Japip, S.; Chung, T.-S. WS2 Deposition on Cross-linked Polyacrylonitrile with Synergistic Transformation to Yield Organic Solvent Nanofiltration Membranes. J. Membr. Sci. 2019, 588, 117219. DOI: 10.1016/j.memsci.2019.117219.
  • Hirunpinyopas, W.; Prestat, E.; Worrall, S. D.; Haigh, S. J.; Dryfe, R. A. W.; Bissett, M. A. Desalination and Nanofiltration through Functionalized Laminar MoS2 Membranes. ACS Nano. 2017, 11, 11082–11090. DOI: 10.1021/acsnano.7b05124.
  • Lu, X.; Gabinet, U. R.; Ritt, C. L.; Feng, X.; Deshmukh, A.; Kawabata, K.; Kaneda, M.; Hashmi, S. M.; Osuji, C. O.; Elimelech, M. Relating Selectivity and Separation Performance of Lamellar Two-dimensional Molybdenum Disulfide (Mos2) Membranes to Nanosheet Stacking Behavior. Environ. Sci. Techn. 2020, 54, 9640–9651. DOI: 10.1021/acs.est.0c02364.
  • Qian, X.; Xie, K.; Guo, S.; Liang, Q.; Zhang, S.; Xiong, Z.; Zhan, H.; Liu, C.; Yang, X.; Zhu, J., et al. Beneficial Restacking of 2D Nanomaterials for Electrocatalysis: A Case of MoS2 Membranes. Chem. Commun. 2020, 56, 7005–7008. DOI: 10.1039/D0CC02139C.
  • Cui, X.; Wu, X.; Zhang, J.; Wang, J.; Zhnag, H.; Du, F.; Qu, L.; Cao, X.; Zhang, P. A Loosely Stacked Lamellar Membrane of Irregular MoS2 Flakes for Ultrahigh Water and Organics Permeation. J. Mater. Chem. A. 2019, 7, 12698–12705. DOI: 10.1039/C9TA03159F.
  • Samantaray, P. K.; Baloda, S.; Madras, G.; Bose, S. Interlocked Dithi-magnetospheres–decorated MoS2 Nanosheets as Molecular Sieves and Traps for Heavy Metal Ions. Adv. Sustain. Syst. 2019, 3, 1800153. DOI: 10.1002/adsu.201800153.
  • Yadav, S.; Ibrar, I.; Altaee, A.; Samal, A. K.; Ghobadi, R.; Zhou, J. Feasibility of Brackish Water and Landfill Leachate Treatment by GO/MoS2-PVA Composite Membranes. Sci. Total Envir. 2020, 745, 141088. DOI: 10.1016/j.scitotenv.2020.141088.
  • Yang, S.; Jiang, Q.; Zhang, K. Few-layers 2D O–MoS2 TFN Nanofiltration Membranes for Future Desalination. J. Membr. Sci. 2020, 604, 118052. DOI: 10.1016/j.memsci.2020.118052.
  • Kang, Z.; Fan, L.; Sun, D. Recent Advances and Challenges of Metal-organic Framework Membranes for Gas Separation. J. Mater. Chem. A. 2017, 5, 10073–10091. DOI: 10.1039/C7TA01142C.
  • Park, H. B. Graphene-based Membranes – A New Opportunity for CO2 Separation. Carbon Manage. 2014, 5, 251–253. DOI: 10.1080/17583004.2014.923237.
  • Tome, L. C.; Marrucho, I. M. Ionic Liquid-based Materials: A Platform to Design Engineered CO2 Separation Membranes. Chem. Soc. Rev. 2016, 45, 2785–2824. DOI: 10.1039/C5CS00510H.
  • Jiang, X.; Li, S.; Shao, L. Pushing CO2-philic Membrane Performance to the Limit by Designing Semi-interpenetrating Networks (SIPN) for Sustainable CO2 Separations. Energy Environ. Sci. 2017, 10, 1339–1344. DOI: 10.1039/C6EE03566C.
  • Qiu, S.; Xue, M.; Zhu, G. Metal-organic Framework Membranes: From Synthesis to Separation Application. Chem. Soc.Rev. 2014, 43, 6116–6140. DOI: 10.1039/C4CS00159A.
  • Yao, J.; Wang, H. Zeolitic Imidazolate Framework Composite Membranes and Thin Films: Synthesis and Applications. Chem. Soc. Rev. 2014, 43, 4470–4493. DOI: 10.1039/C3CS60480B.
  • Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. DOI: 10.1021/cr200190s.
  • Wang, J.; Wang, S.; Xin, Q.; Li, Y. Perspectives on Water-facilitated CO2 Capture Materials. J. Mater. Chem. A. 2017, 5, 6794–6816. DOI: 10.1039/C7TA01297G.
  • Achari, A.; S, S.; Eswaramoorthy, M. High Performance MoS2 Membranes: Effects of Thermally Driven Phase Transition on CO2 Separation Efficiency. Energy Environ. Sci. 2016, 9, 1224–1228. DOI: 10.1039/C5EE03856A.
  • Ostwal, M.; Shinde, D. B.; Wang, X.; Gadwal, I.; Lai, Z. Graphene Oxide – Molybdenum Disulfide Hybrid Membranes for Hydrogen Separation. J. Membr. Sci. 2018, 550, 145–154. DOI: 10.1016/j.memsci.2017.12.063.
  • Wang, D.; Wang, Z.; Wang, L.; Hu, L.; Jin, J. Ultrathin Membranes of Single-layered MoS2 Nanosheets for High-permeance Hydrogen Separation. Nanoscale. 2015, 7, 17649–17652. DOI: 10.1039/C5NR06321C.
  • Zhang, Y.; Meng, Z.; Shi, Q.; Gao, H.; Liu, Y.; Wang, Y.; Rao, D.; Deng, K.; Lu, R. Nanoporous MoS2 Monolayer as a Promising Membrane for Purifying Hydrogen and Enriching Methane. J. Condens. Matter Phys. 2017, 9, 375201. DOI: 10.1088/1361-648X/aa7d5e.
  • Azamat, J.; Khataee, A. MoS2 Nanosheet as a Promising Nanostructure Membrane for Gas Separation. J. Ind. Eng. Chem. 2018, 66, 269–278. DOI: 10.1016/j.jiec.2018.05.040.
  • Chen, D.; Ying, W.; Guo, Y.; Ying, Y.; Peng, X. Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane. ACS Appl. Mater. Interface. 2017, 9, 44251–44257. DOI: 10.1021/acsami.7b15762.
  • Kang, T. W.; Han, J.; Lee, S.; Hwang, I.-J.; Jeon, S.-J.; Ju, J.-M.; Kim, M.-J.; Yang, J.-K.; Jun, B.; Lee, C. H., et al. 2D Transition Metal Dichalcogenides with Glucan Multivalency for Antibody-free Pathogen Recognition. Nat. Commun. 2018, 9, 2549. DOI: 10.1038/s41467-018-04997-w.
  • Eftekhari, A. Tungsten Dichalcogenides (WS2, WSe2, and WTe2): Materials Chemistry and Applications. J. Mater. Chem. A. 2017, 5, 18299–18325. DOI: 10.1039/C7TA04268J.
  • Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. Adv. Mater. 2020, 32, 1903826. DOI: 10.1002/adma.201903826.
  • David, L.; Bhandavat, R.; Barrera, U.; Singh, G. Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode. Sci.Rep. 2015, 5, 9792. DOI: 10.1038/srep09792.
  • Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Hunag, Y. Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries. Sci. Rep. 2015, 5, 9254. DOI: 10.1038/srep09254.
  • Mo, J.; Wu, S.; Lau, T. H. M.; Kato, R.; Suenaga, K.; Wu, T.-S.; Soo, Y.-L.; Foord, J. S.; Tsang, S. C. E. Transition Metal Atom–doped Monolayer MoS2 in a Proton-exchange Membrane Electrolyzer. Mater. Today Adv. 2020, 6, 100020. DOI: 10.1016/j.mtadv.2019.100020.
  • Li, J.; Morthensen, S. T.; Zhu, J.; Yuan, S.; Wang, J.; Volodine, A.; Lin, J.; Shen, J.; Bruggen, B.-V. R. Exfoliated MoS2 Nanosheets Loaded on Bipolar Exchange Membranes Interfaces as Advanced Catalysts for Water Dissociation. Sep. Purifi. Techn. 2018, 194, 416–424. DOI: 10.1016/j.seppur.2017.11.065.
  • Jiang, X.; Sun, Y.; Zhang, H.; Hou, L. Preparation and Characterization of Quaternized Poly(vinyl alcohol)/chitosan/MoS2 Composite Anion Exchange Membranes with High Selectivity. Carbohydr. Polym. 2018, 180, 96–103. DOI: 10.1016/j.carbpol.2017.10.023.
  • Zheng, Z.; Grünker, R.; Feng, X. Synthetic Two-Dimensional Materials: A New Paradigm of Membranes for Ultimate Separation. Adv. Mater. 2016, 28, 6529–6545. DOI: 10.1002/adma.201506237.
  • Anwar, M. T.; Yan, X.; Asghar, M. R.; Husnain, N.; Shen, S.; Luo, L.; Cheng, X.; Wei, G.; Zhang, J. MoS2-rGO Hybrid Architecture as Durable Support for Cathode Catalyst in Proton Exchange Membrane Fuel Cells. Chin. J. Catal. 2019, 40, 1160–1167. DOI: 10.1016/S1872-2067(19)63365-6.
  • Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Iqbal, A.; Wang, J.; Sin, H.; Li, L.; Tang, Z. MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries. Adv. Mater. 2017, 29, 1606817. DOI: 10.1002/adma.201606817.
  • Di, M.; Xiu, Y.; Dong, Z.; Hu, L.; Gao, L.; Dai, Y.; Yan, X.; Zhang, N.; Pan, Y.; Jiang, X., et al. Two-dimensional MoS2 Nanosheets Constructing Highly Ion-selective Composite Membrane for Vanadium Redox Flow Battery. J. Membr Sci. 2021, 623, 119051. DOI: 10.1016/j.memsci.2021.119051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.